
Enrique Moriones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7322089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ICTV Virus Taxonomy Profile: Geminiviridae. Journal of General Virology, 2017, 98, 131-133.	2.9	676
2	Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 2015, 160, 1593-1619.	2.1	664
3	Geminivirus strain demarcation and nomenclature. Archives of Virology, 2008, 153, 783-821.	2.1	585
4	Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research, 2000, 71, 123-134.	2.2	401
5	World Management of Geminiviruses. Annual Review of Phytopathology, 2018, 56, 637-677.	7.8	247
6	Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Archives of Virology, 2017, 162, 1819-1831.	2.1	240
7	Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Archives of Virology, 2008, 153, 763-781.	2.1	226
8	A Natural Recombinant between the Geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus Exhibits a Novel Pathogenic Phenotype and Is Becoming Prevalent in Spanish Populations. Virology, 2002, 303, 317-326.	2.4	225
9	Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Archives of Virology, 2014, 159, 2193-2203.	2.1	218
10	A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Archives of Virology, 2013, 158, 1411-1424.	2.1	216
11	Viral suppression of RNA silencing in plants. Molecular Plant Pathology, 2004, 5, 71-82.	4.2	159
12	Displacement of Tomato Yellow Leaf Curl Virus (TYLCV)-Sr by TYLCV-Is in Tomato Epidemics in Spain. Phytopathology, 1999, 89, 1038-1043.	2.2	153
13	Tomato yellow leaf curl viruses: <i>ménage à trois</i> between the virus complex, the plant and the whitefly vector. Molecular Plant Pathology, 2010, 11, 441-450.	4.2	146
14	Tomato Yellow Leaf Curl Virus-Is Causes a Novel Disease of Common Bean and Severe Epidemics in Tomato in Spain. Plant Disease, 1999, 83, 29-32.	1.4	141
15	Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Current Opinion in Virology, 2015, 10, 14-19.	5.4	137
16	Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Archives of Virology, 2018, 163, 2587-2600.	2.1	133
17	Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology, 2006, 350, 433-442.	2.4	131
18	Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology, 2007, 359, 302-312.	2.4	127

#	Article	IF	CITATIONS
19	EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biology, 2007, 7, 34.	3.6	123
20	Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses, 2017, 9, 264.	3.3	116
21	First Detection of <i>Tomato leaf curl New Delhi virus</i> Infecting Zucchini in Spain. Plant Disease, 2014, 98, 857-857.	1.4	113
22	Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology, 2004, 318, 451-460.	2.4	108
23	Synergistic Interaction Between Tomato chlorosis virus and Tomato spotted wilt virus Results in Breakdown of Resistance in Tomato. Phytopathology, 2006, 96, 1263-1269.	2.2	107
24	Severe Yellowing Outbreaks in Tomato in Spain Associated with Infections of Tomato chlorosis virus. Plant Disease, 2000, 84, 835-837.	1.4	105
25	Typing of Tomato Yellow Leaf Curl Viruses in Europe. European Journal of Plant Pathology, 2000, 106, 179-186.	1.7	105
26	Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology, 2008, 379, 168-174.	2.4	103
27	Whitefly Resistance Traits Derived from the Wild Tomato <i>Solanum pimpinellifolium</i> Affect the Preference and Feeding Behavior of <i>Bemisia tabaci</i> and Reduce the Spread of <i>Tomato yellow leaf curl virus</i> . Phytopathology, 2011, 101, 1191-1201.	2.2	103
28	Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology, 2007, 365, 210-219.	2.4	98
29	Natural recombination between Tomato yellow leaf curl virus-Is and Tomato leaf curl virus. Journal of General Virology, 2000, 81, 2797-2801.	2.9	97
30	High similarity among the tomato yellow leaf curl virus isolates from the West Mediterranean Basin: the nucleotide sequence of an infectious clone from Spain. Archives of Virology, 1994, 135, 165-170.	2.1	96
31	Pepper (Capsicum annuum) Is a Dead-End Host for Tomato yellow leaf curl virus. Phytopathology, 2005, 95, 1089-1097.	2.2	96
32	Increase in the Relative Fitness of a Plant Virus RNA Associated with Its Recombinant Nature. Virology, 1994, 203, 373-377.	2.4	89
33	Revisiting the classification of curtoviruses based on genome-wide pairwise identity. Archives of Virology, 2014, 159, 1873-1882.	2.1	89
34	A Novel Strain of Tomato Leaf Curl New Delhi Virus Has Spread to the Mediterranean Basin. Viruses, 2016, 8, 307.	3.3	83
35	A novel class of DNA satellites associated with New World begomoviruses. Virology, 2012, 426, 1-6.	2.4	81
36	Occurrence, Distribution, and Relative Incidence of Mosaic Viruses Infecting Field-Grown Melon in Spain. Plant Disease, 1998, 82, 979-982.	1.4	79

#	Article	IF	CITATIONS
37	Epidemic of Cucumber Mosaic Virus Plus Satellite RNA in Tomatoes in Eastern Spain. Plant Disease, 1992, 76, 363.	1.4	75
38	The movement protein (<scp>NSm</scp>) of <i><scp>T</scp>omato spotted wilt virus</i> is the avirulence determinant in the tomato <i>Swâ€5</i> geneâ€based resistance. Molecular Plant Pathology, 2014, 15, 802-813.	4.2	74
39	First report of <i>Bemisia tabaci</i> Mediterranean (Q biotype) species in Brazil. Pest Management Science, 2015, 71, 501-504.	3.4	72
40	High Genetic Stability of the Begomovirus Tomato yellow leaf curl Sardinia virus in Southern Spain Over an 8-Year Period. Phytopathology, 2002, 92, 842-849.	2.2	68
41	Molecular Characterization of a Melon necrotic spot virus Strain That Overcomes the Resistance in Melon and Nonhost Plants. Molecular Plant-Microbe Interactions, 2004, 17, 668-675.	2.6	68
42	First Report of Tomato Yellow Leaf Curl Virus in Spain. Plant Disease, 1993, 77, 953B.	1.4	63
43	Indigenous American species of the <i>Bemisia tabaci</i> complex are still widespread in the Americas. Pest Management Science, 2014, 70, 1440-1445.	3.4	60
44	Resistance-driven selection of begomoviruses associated with the tomato yellow leaf curl disease. Virus Research, 2009, 146, 66-72.	2.2	58
45	Fulfilling Koch's postulates confirms the monopartite nature of tomato leaf deformation virus: A begomovirus native to the New World. Virus Research, 2013, 173, 286-293.	2.2	56
46	At least two indigenous species of the <i>Bemisia tabaci</i> complex are present in Brazil. Journal of Applied Entomology, 2013, 137, 113-121.	1.8	55
47	Tomato torrado virus is Transmitted by <i>Bemisia tabaci</i> and Infects Pepper and Eggplant in Addition to Tomato. Plant Disease, 2008, 92, 1139-1139.	1.4	54
48	First Report of Tomato Yellow Leaf Curl Virus-Is in Spain: Coexistence of Two Different Geminiviruses in the Same Epidemic Outbreak. Plant Disease, 1997, 81, 1461-1461.	1.4	51
49	Complete nucleotide sequence of the RNA2 of the crinivirus tomato chlorosis virus. Archives of Virology, 2006, 151, 581-587.	2.1	48
50	Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theoretical and Applied Genetics, 2009, 118, 275-284.	3.6	47
51	<i>Tomato chlorosis virus</i> in pepper: prevalence in commercial crops in southeastern Spain and symptomatology under experimental conditions. Plant Pathology, 2012, 61, 994-1001.	2.4	46
52	Resistance to <i>Tomato yellow leaf curl virus</i> Accumulation in the Tomato Wild Relative <i>Solanum habrochaites</i> Associated with the C4 Viral Protein. Molecular Plant-Microbe Interactions, 2011, 24, 849-861.	2.6	45
53	Acylsucrose-Producing Tomato Plants Forces Bemisia tabaci to Shift Its Preferred Settling and Feeding Site. PLoS ONE, 2012, 7, e33064.	2.5	45
54	Differential interactions among strains of tomato aspermy virus and satellite RNAs of cucumber mosaic virus. Virology, 1992, 186, 475-480.	2.4	44

#	Article	IF	CITATIONS
55	Effects of the Crinivirus Coat Protein–Interacting Plant Protein SAHH on Post-Transcriptional RNA Silencing and Its Suppression. Molecular Plant-Microbe Interactions, 2013, 26, 1004-1015.	2.6	43
56	Epidemics of Aphid-transmitted Viruses in Melon Crops in Spain. European Journal of Plant Pathology, 2003, 109, 129-138.	1.7	42
57	Inheritance of Resistance to Watermelon mosaic virus in Cucumis melo that Impairs Virus Accumulation, Symptom Expression, and Aphid Transmission. Phytopathology, 2005, 95, 840-846.	2.2	42
58	First Report of Sweet Pepper (Capsicum annuum) as a Natural Host Plant for Tomato chlorosis virus. Plant Disease, 2004, 88, 224-224.	1.4	42
59	Title is missing!. European Journal of Plant Pathology, 1998, 104, 295-300.	1.7	40
60	Begomovirus-Associated Satellite DNA Diversity Captured Through Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae). Viruses, 2016, 8, 36.	3.3	40
61	Potential Sources of Resistance for Melon to Nonpersistently Aphid-borne Viruses. Plant Disease, 2003, 87, 960-964.	1.4	39
62	Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae) Reveal Novel Begomovirus Species in the New and OldWorlds. Viruses, 2015, 7, 5553-5570.	3.3	39
63	Nucleotide sequence of tomato aspermy virus RNA 2. Journal of General Virology, 1991, 72, 779-783.	2.9	39
64	Rapid evolution of the population of begomoviruses associated with the tomato yellow leaf curl disease after invasion of a new ecological niche: a review. Spanish Journal of Agricultural Research, 2008, 6, 147.	0.6	39
65	Phenotypic Expression, Stability, and Inheritance of a Recessive Resistance to Monopartite Begomoviruses Associated with Tomato Yellow Leaf Curl Disease in Tomato. Phytopathology, 2008, 98, 618-627.	2.2	38
66	Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virology Journal, 2012, 9, 241.	3.4	38
67	A Jasmonate-Inducible Defense Trait Transferred from Wild into Cultivated Tomato Establishes Increased Whitefly Resistance and Reduced Viral Disease Incidence. Frontiers in Plant Science, 2016, 7, 1732.	3.6	37
68	Title is missing!. European Journal of Plant Pathology, 2000, 106, 391-394.	1.7	36
69	Spanish Melon necrotic spot virus Isolate Overcomes the Resistance Conferred by the Recessive nsv Gene of Melon. Plant Disease, 2002, 86, 694-694.	1.4	34
70	Differential Shape of Geminivirus Mutant Spectra Across Cultivated and Wild Hosts With Invariant Viral Consensus Sequences. Frontiers in Plant Science, 2018, 9, 932.	3.6	33
71	Recessive Resistance Derived from Tomato cv. Tyking-Limits Drastically the Spread of Tomato Yellow Leaf Curl Virus. Viruses, 2015, 7, 2518-2533.	3.3	32
72	Evolutionary relationships in the cucumoviruses: nucleotide sequence of tomato aspermy virus RNA 1. Journal of General Virology, 1991, 72, 2191-2195.	2.9	31

#	Article	IF	CITATIONS
73	Nucleotide sequence and infectious transcripts from a full-length cDNA clone of the carmovirus Melon necrotic spot virus. Archives of Virology, 2003, 148, 599-607.	2.1	31
74	Resistance to Monopartite Begomoviruses Associated with the Bean Leaf Crumple Disease in Phaseolus vulgaris Controlled by a Single Dominant Gene. Phytopathology, 2005, 95, 819-826.	2.2	31
75	Recombination in the TYLCV Complex: a Mechanism to Increase Genetic Diversity. Implications for Plant Resistance Development. , 2007, , 119-138.		31
76	Resistance to Tomato chlorosis virus in Wild Tomato Species that Impair Virus Accumulation and Disease Symptom Expression. Phytopathology, 2010, 100, 582-592.	2.2	31
77	Complete sequence of the RNA1 of a European isolate of tomato chlorosis virus. Archives of Virology, 2007, 152, 839-841.	2.1	30
78	Begomoviruses infecting weeds in Cuba: increased host range and a novel virus infecting Sida rhombifolia. Archives of Virology, 2012, 157, 141-146.	2.1	30
79	A sensitive method for the quantification of virion-sense and complementary-sense DNA strands of circular single-stranded DNA viruses. Scientific Reports, 2014, 4, 6438.	3.3	30
80	Tomato leaf deformation virus, a novel begomovirus associated with a severe disease of tomato in Peru. European Journal of Plant Pathology, 2011, 129, 1-7.	1.7	29
81	Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci. Scientific Reports, 2016, 6, 30942.	3.3	29
82	Revisiting Seed Transmission of the Type Strain of <i>Tomato yellow leaf curl virus</i> in Tomato Plants. Phytopathology, 2020, 110, 121-129.	2.2	29
83	Tomato Yellow Leaf Curl Sardinia Virus, a Begomovirus Species Evolving by Mutation and Recombination: A Challenge for Virus Control. Viruses, 2019, 11, 45.	3.3	28
84	Comparative host reactions and Frankliniella occidentalis transmission of different isolates of tomato spotted wilt tospovirus from Spain. Plant Pathology, 1997, 46, 407-415.	2.4	27
85	Host-associated selection of sequence variants from a satellite RNA of cucumber mosaic virus. Virology, 1991, 184, 465-468.	2.4	26
86	The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage. Virology, 2016, 488, 129-136.	2.4	26
87	First Report of Tomato chlorosis virus Infecting Tomato in Sudan. Plant Disease, 2011, 95, 1592-1592.	1.4	26
88	A novel monopartite begomovirus infecting sweet potato in Brazil. Archives of Virology, 2011, 156, 1291-1294.	2.1	24
89	First Report of <i>Tomato yellow leaf curl virus</i> in Tomato in Costa Rica. Plant Disease, 2014, 98, 699-699.	1.4	24
90	Occurrence of tomato spotted wilt and cucumber mosaic viruses in field-grown tomato crops and associated weeds in northeastern Spain. Plant Pathology, 1996, 45, 837-842.	2.4	23

#	Article	IF	CITATIONS
91	Spread of Tomato yellow leaf curl virus Sar from the Mediterranean Basin: Presence in the Canary Islands and Morocco. Plant Disease, 2000, 84, 490-490.	1.4	23
92	Multiple Resistance to <i>Meloidogyne</i> spp. and to Bipartite and Monopartite <i>Begomovirus</i> spp. in Wild <i>Solanum</i> (<i>Lycopersicon</i>) Accessions. Plant Disease, 2010, 94, 179-185.	1.4	22
93	Sweepoviruses Cause Disease in Sweet Potato and Related Ipomoea spp.: Fulfilling Koch's Postulates for a Divergent Group in the Genus Begomovirus. PLoS ONE, 2011, 6, e27329.	2.5	22
94	Characterisation and genetic diversity of pepper leafroll virus, a new bipartite begomovirus infecting pepper, bean and tomato in Peru. Annals of Applied Biology, 2014, 164, 62-72.	2.5	21
95	First Report of <i>Pepper vein yellows virus</i> Infecting Sweet Pepper in Spain. Plant Disease, 2013, 97, 1261-1261.	1.4	21
96	Complete nucleotide sequence of Sida golden mosaic Florida virus and phylogenetic relationships with other begomoviruses infecting malvaceous weeds in the Caribbean. Archives of Virology, 2010, 155, 1535-1537.	2.1	19
97	Two novel begomoviruses belonging to different lineages infecting Rhynchosia minima. Archives of Virology, 2010, 155, 2053-2058.	2.1	18
98	Complete genome sequences of two begomoviruses infecting weeds in Venezuela. Archives of Virology, 2013, 158, 277-280.	2.1	18
99	<i>ArabidopsisÂthaliana</i> , an experimental host for tomato yellow leaf curl diseaseâ€associated begomoviruses by agroinoculation and whitefly transmission. Plant Pathology, 2015, 64, 265-271.	2.4	16
100	Host Plant Resistance to Bemisia tabaci to Control Damage Caused in Tomato Plants by the Emerging Crinivirus Tomato Chlorosis Virus. Frontiers in Plant Science, 2020, 11, 585510.	3.6	16
101	Title is missing!. European Journal of Plant Pathology, 1997, 103, 623-629.	1.7	15
102	Improvement of the print-capture polymerase chain reaction procedure for efficient amplification of DNA virus genomes from plants and insect vectors. Journal of Virological Methods, 1998, 75, 195-198.	2.1	15
103	New source of resistance to mosaic virus transmission by Aphis gossypii in melon. Euphytica, 2003, 133, 313-318.	1.2	15
104	RAPID SEROLOGICAL DETECTION OF TOMATO SPOTTED WILT VIRUS IN INDIVIDUAL THRIPS BY SQUASHâ€BLOT ASSAY FOR USE IN EPIDEMIOLOGICAL STUDIES. Plant Pathology, 1996, 45, 367-374.	2.4	14
105	Diverse population of a new bipartite begomovirus infecting tomato crops in Uruguay. Archives of Virology, 2012, 157, 1137-1142.	2.1	12
106	Complete genome sequences of two novel begomoviruses infecting common bean in Venezuela. Archives of Virology, 2013, 158, 723-727.	2.1	12
107	Distribution and diversity of begomoviruses in tomato and sweet pepper plants in Costa Rica. Annals of Applied Biology, 2018, 172, 20-32.	2.5	12
108	RESISTANCE TO APHIS GOSSYPII AND TO VIRUS TRANSMISSION BY THIS APHID IN MELON. Acta Horticulturae, 2000, , 305-312.	0.2	11

#	Article	IF	CITATIONS
109	Cotton leaf curl Gezira alphasatellite associated with tomato leaf curl Sudan virus approaches the expected upper size limit in the evolution of alphasatellites. Virus Research, 2013, 178, 506-510.	2.2	11
110	An Acylsucrose-Producing Tomato Line Derived from the Wild Species Solanum pimpinellifolium Decreases Fitness of the Whitefly Trialeurodes vaporariorum. Insects, 2020, 11, 616.	2.2	11
111	Occurrence of Barley Yellow Dwarf Viruses in Small-Grain Cereals and in Alternative Hosts in Spain. Plant Disease, 1991, 75, 930.	1.4	11
112	Genetic diversity and geographic distribution of <scp><i>Bemisia tabaci</i></scp> and <scp><i>Trialeurodes vaporariorum</i></scp> in Costa Rica. Annals of Applied Biology, 2019, 174, 248-261.	2.5	10
113	Complete genome sequence of Jacquemontia yellow mosaic virus, a novel begomovirus from Venezuela related to other New World bipartite begomoviruses infecting Convolvulaceae. Archives of Virology, 2014, 159, 1857-1860.	2.1	9
114	Characterization of a satellite RNA associated with strain K8 of cucumber mosaic virus. Nucleic Acids Research, 1990, 18, 4593-4593.	14.5	8
115	Mapping Helper Virus Functions for Cucumber Mosaic Virus Satellite RNA with Pseudorecombinants Derived from Cucumber Mosaic and Tomato Aspermy Viruses. Virology, 1994, 205, 574-577.	2.4	8
116	The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses. Viruses, 2017, 9, 358.	3.3	8
117	Evidence of a Naturally Occurring Recombinant Between Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus in Spain. Plant Disease, 2001, 85, 1289-1289.	1.4	8
118	TOMATO YELLOW LEAF CURL DISEASE CONTROL WITH UV-BLOCKING PLASTIC COVERS IN COMMERCIAL PLASTICHOUSES OF SOUTHERN SPAIN. Acta Horticulturae, 2004, , 537-542.	0.2	7
119	The p22 RNA Silencing Suppressor of the Crinivirus Tomato chlorosis virus is Dispensable for Local Viral Replication but Important for Counteracting an Antiviral RDR6-Mediated Response during Systemic Infection. Viruses, 2016, 8, 182.	3.3	7
120	Tomato Yellow Leaf Curl Disease Epidemics. , 2009, , 259-282.		7
121	First Report of the Begomovirus <i>Tomato yellow vein streak virus</i> Infecting Tomato in Uruguay. Plant Disease, 2016, 100, 231-231.	1.4	6
122	Epidemiology of RPV- and PAV-like barley yellow dwarf viruses on winter barley in central Spain. Crop Protection, 1993, 12, 224-228.	2.1	5
123	Genetic diversity and silencing suppression activity of the p22 protein of Tomato chlorosis virus isolates from tomato and sweet pepper. Virus Genes, 2015, 51, 283-289.	1.6	5
124	Identification of genetic sources with attenuated Tomato chlorosis virus-induced symptoms in Solanum (section Lycopersicon) germplasm. Euphytica, 2018, 214, 1.	1.2	5
125	Use of Systemic Acquired Resistance and Whitefly Optical Barriers to Reduce Tomato Yellow Leaf Curl Disease Damage to Tomato Crops. Plant Disease, 2019, 103, 1181-1188.	1.4	5
126	Experimental transmission of the mild strain of Tomato yellow leaf curl virus (TYLCV) to Amaranthus dubius by Bemisia tabaci. Phytoparasitica, 2012, 40, 369-373.	1.2	3

#	Article	IF	CITATIONS
127	Tomato disease resistances in the post-genomics era. Acta Horticulturae, 2018, , 1-18.	0.2	3
128	Viral Diseases. Developments in Plant Pathology, 1999, , 16-33.	0.1	2
129	Genotyping selection for resistance against tomato yellow leaf curl virus (TYLCV) conferred by Ty-1 and Ty-3 genes in tomato. Molecular Breeding, 2012, 30, 1131-1142.	2.1	1
130	Viral Diseases. , 2020, , 3-31.		0