Nobuhito Goda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7321910/publications.pdf

Version: 2024-02-01

71 papers

4,860 citations

32 h-index 66 g-index

73 all docs

73 docs citations

73 times ranked 7697 citing authors

#	Article	IF	CITATIONS
1	<i>Sima</i> , a <i>Drosophila</i> homolog of <i>HIFâ€lα</i> , in fat body tissue inhibits larval body growth by inducing <i>Tribbles</i> gene expression. Genes To Cells, 2022, 27, 145-151.	1.2	1
2	$p38\hat{l}\pm$ plays differential roles in hematopoietic stem cell activity dependent on aging contexts. Journal of Biological Chemistry, 2021, 296, 100563.	3.4	5
3	SLC15A4 mediates M1-prone metabolic shifts in macrophages and guards immune cells from metabolic stress. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
4	Epithelial cells remove precancerous cells by cell competition via MHC class l–LILRB3 interaction. Nature Immunology, 2021, 22, 1391-1402.	14.5	22
5	In vivo O2 imaging in hepatic tissues by phosphorescence lifetime imaging microscopy using Ir(III) complexes as intracellular probes. Scientific Reports, 2020, 10, 21053.	3.3	23
6	ZAK Inhibitor PLX4720 Promotes Extrusion of Transformed Cells via Cell Competition. IScience, 2020, 23, 101327.	4.1	9
7	Adrenal cortex hypoxia modulates aldosterone production in heart failure. Biochemical and Biophysical Research Communications, 2020, 524, 184-189.	2.1	8
8	Generation of Rat Monoclonal Antibodies Specific for Human Stromal Cell-Derived Factor-2. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2020, 39, 23-26.	1.6	1
9	Transcriptional profiles in the chicken ductus arteriosus during hatching. PLoS ONE, 2019, 14, e0214139.	2.5	4
10	Pyruvate dehydrogenase activation precedes the down-regulation of fatty acid oxidation in monocrotaline-induced myocardial toxicity in mice. Heart and Vessels, 2019, 34, 545-555.	1.2	5
11	Loss of hypoxia inducible factorâ€lα aggravates î³Î´Tâ€cellâ€mediated inflammation during acetaminophenâ€induced liver injury. Hepatology Communications, 2018, 2, 571-581.	4.3	18
12	HIF-1-dependent lipin1 induction prevents excessive lipid accumulation in choline-deficient diet-induced fatty liver. Scientific Reports, 2018, 8, 14230.	3.3	31
13	Effects of aging on serum levels of lipid molecular species as determined by lipidomics analysis in Japanese men and women. Lipids in Health and Disease, 2018, 17, 135.	3.0	20
14	Differential expression of Lutheran/BCAM regulates biliary tissue remodeling in ductular reaction during liver regeneration. ELife, 2018, 7, .	6.0	12
15	Type I neuregulin \hat{l} is a novel local mediator to suppress hepatic gluconeogenesis in mice. Scientific Reports, 2017, 7, 42959.	3.3	8
16	Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid–induced insulin resistance. Experimental Cell Research, 2017, 359, 86-93.	2.6	50
17	Low Cardiac Output Leads Hepatic Fibrosis in Right Heart Failure Model Rats. PLoS ONE, 2016, 11, e0148666.	2.5	15
18	The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages. Scientific Reports, 2016, 6, 28845.	3.3	35

#	Article	IF	CITATIONS
19	HIF- $1\hat{i}$ ± in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance. Diabetes, 2016, 65, 3649-3659.	0.6	81
20	HIF- $1\hat{1}$ ±-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nature Communications, 2016, 7, 11635.	12.8	233
21	Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles. Scientific Reports, 2016, 6, 34990.	3.3	97
22	$p38\hat{l}_{\pm}$ Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress. Cell Stem Cell, 2016, 19, 192-204.	11.1	92
23	Heterozygous deletion of sarcolipin maintains normal cardiac function. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H92-H103.	3.2	8
24	Potential Biomarkers of Fatigue Identified by Plasma Metabolome Analysis in Rats. PLoS ONE, 2015, 10, e0120106.	2.5	39
25	Innate Response to Human Cancer Cells with or without IL-2 Receptor Common Î ³ -Chain Function in NOD Background Mice Lacking Adaptive Immunity. Journal of Immunology, 2015, 195, 1883-1890.	0.8	3
26	Hypoxia and fatty liver. World Journal of Gastroenterology, 2014, 20, 15087.	3.3	79
27	Transcription Profiles of the Ductus Arteriosus in Brown-Norway Rats With Irregular Elastic Fiber Formation. Circulation Journal, 2014, 78, 1224-1233.	1.6	23
28	Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice. Diabetologia, 2013, 56, 1403-1412.	6.3	182
29	Regulation of Glycolysis by Pdk Functions as a Metabolic Checkpoint for Cell Cycle Quiescence in Hematopoietic Stem Cells. Cell Stem Cell, 2013, 12, 49-61.	11.1	659
30	Application of nanosheets as an anti-adhesion barrier in partial hepatectomy., 2013, 101, 1251-1258.		19
31	Metabolomic profiling analysis reveals chamber-dependent metabolite patterns in the mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H494-H505.	3.2	18
32	Hypoxiaâ€Inducible Factorâ€I Is a Determinant of Lobular Structure and Oxygen Consumption in the Liver. Microcirculation, 2013, 20, 385-393.	1.8	14
33	Dynamic regulation of Th17 differentiation by oxygen concentrations. International Immunology, 2012, 24, 137-146.	4.0	64
34	A role for endothelial cells in promoting the maturation of astrocytes through the apelin/APJ system in mice. Development (Cambridge), 2012, 139, 1327-1335.	2.5	45
35	Heterofunctional nanosheet controlling cell adhesion properties by collagen coating. Journal of Biomaterials Applications, 2012, 27, 131-141.	2.4	28
36	HIF-1 in T cells ameliorated dextran sodium sulfate-induced murine colitis. Journal of Leukocyte Biology, 2012, 91, 901-909.	3.3	54

#	Article	IF	CITATIONS
37	HIF-1α induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. Journal of Hepatology, 2012, 56, 441-447.	3.7	101
38	Hypoxia-inducible factors and their roles in energy metabolism. International Journal of Hematology, 2012, 95, 457-463.	1.6	160
39	Guest editorial: hypoxia biology in health and disease. International Journal of Hematology, 2012, 95, 455-456.	1.6	2
40	The formation of an angiogenic astrocyte template is regulated by the neuroretina in a HIF-1-dependent manner. Developmental Biology, 2012, 363, 106-114.	2.0	60
41	The manner of metabolism is different between the atrium and the ventricle. FASEB Journal, 2012, 26, 1144.18.	0.5	1
42	Disruption of HIF- $1\hat{l}\pm$ in hepatocytes impairs glucose metabolism in diet-induced obesity mice. Biochemical and Biophysical Research Communications, 2011, 415, 445-449.	2.1	37
43	von Hippel-Lindau protein regulates transition from the fetal to the adult circulatory system in retina. Development (Cambridge), 2010, 137, 1563-1571.	2.5	70
44	Regulation of the HIF-1α Level Is Essential for Hematopoietic Stem Cells. Cell Stem Cell, 2010, 7, 391-402.	11.1	778
45	Fenofibrate, a Peroxisome Proliferator-Activated Receptor α Agonist, Improves Hepatic Microcirculatory Patency and Oxygen Availability in a High-Fat-Diet-Induced Fatty Liver in Mice. Advances in Experimental Medicine and Biology, 2010, 662, 77-82.	1.6	35
46	Cystathionine \hat{l}^2 -synthase as a carbon monoxide-sensitive regulator of bile excretion. Hepatology, 2009, 49, 141-150.	7.3	96
47	HIF- $\hat{1}$ ± is necessary to support gluconeogenesis during liver regeneration. Biochemical and Biophysical Research Communications, 2009, 387, 789-794.	2.1	59
48	HIFâ€1 is not a critical determinant for metabolic zonation in liver acinus. FASEB Journal, 2008, 22, 1016.7.	0.5	0
49	Erythrocytes with T-State–Stabilized Hemoglobin as a Therapeutic Tool for Postischemic Liver Dysfunction. Antioxidants and Redox Signaling, 2006, 8, 1847-1855.	5.4	11
50	Carbon Monoxide as a Guardian against Hepatobiliary Dysfunction. Alcoholism: Clinical and Experimental Research, 2005, 29, 134S-139S.	2.4	9
51	Hydrogen Sulfide as an Endogenous Modulator of Biliary Bicarbonate Excretion in the Rat Liver. Antioxidants and Redox Signaling, 2005, 7, 788-794.	5.4	24
52	Cadmium Exposure Alters Metabolomics of Sulfur-Containing Amino Acids in Rat Testes. Antioxidants and Redox Signaling, 2005, 7, 781-787.	5.4	40
53	Carbon Monoxide From Heme Oxygenase-2 Is a Tonic Regulator Against NO-Dependent Vasodilatation in the Adult Rat Cerebral Microcirculation. Circulation Research, 2005, 97, e104-14.	4.5	78
54	HIF-1 in Cell Cycle Regulation, Apoptosis, and Tumor Progression. Antioxidants and Redox Signaling, 2003, 5, 467-473.	5.4	102

#	Article	IF	Citations
55	Hypoxia-Inducible Factor $1\hat{l}_{\pm}$ Is Essential for Cell Cycle Arrest during Hypoxia. Molecular and Cellular Biology, 2003, 23, 359-369.	2.3	478
56	Microvascular Effects of the Heme Oxygenase-CO System. , 2003, , 219-226.		0
57	Organ Design for Generation and Reception of CO: Lessons from the Liver. Antioxidants and Redox Signaling, 2002, 4, 633-637.	5.4	25
58	Gene Transfection of H25A Mutant Heme Oxygenase-1 Protects Cells against Hydroperoxide-induced Cytotoxicity. Journal of Biological Chemistry, 2002, 277, 10712-10718.	3.4	102
59	Stabilization of mast cells by heme oxygenase-1: an anti-inflammatory role. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H861-H870.	3.2	51
60	From O2 to H2S: A landscape view of gas biology Keio Journal of Medicine, 2002, 51, 1-10.	1.1	40
61	Leydig cell–derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. Journal of Clinical Investigation, 2002, 109, 457-467.	8.2	75
62	Leydig cell–derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. Journal of Clinical Investigation, 2002, 109, 457-467.	8.2	30
63	Altered expression of heme oxygenase-1 in the livers of patients with portal hypertensive diseases. Hepatology, 2001, 33, 32-42.	7.3	82
64	Cloning and characterization of the promoter of murine cytohesin-1 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1493, 195-199.	2.4	4
65	Carbon monoxide overproduced by heme oxygenase-1 causes a reduction of vascular resistance in perfused rat liver. American Journal of Physiology - Renal Physiology, 1999, 277, G1088-G1096.	3.4	31
66	Characterization of the Mouse .ALPHA.1D-Adrenergic Receptor Gene The Japanese Journal of Pharmacology, 1999, 81, 271-278.	1.2	8
67	Structure and Sequence of the Mouse V1a and V1b Vasopressin Receptor Genes The Japanese Journal of Pharmacology, 1999, 81, 388-392.	1.2	14
68	Carbon monoxide as a regulator of bile canalicular contractility in cultured rat hepatocytes. Hepatology, 1998, 28, 286-295.	7. 3	63
69	Discontinuous total parenteral nutrition prevents postischemic mitochondrial dysfunction in rat liver. Hepatology, 1998, 28, 1289-1299.	7.3	17
70	NO and Microvascular Function. Japanese Journal of Thrombosis and Hemostasis, 1995, 6, 82-85.	0.1	0
71	Carbon Monoxide as an Endogenous Modulator of Hepatic Vascular Perfusion. Biochemical and Biophysical Research Communications, 1994, 205, 1333-1337.	2.1	143