
Andrew W Stent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7321907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical rodent models of cardiac fibrosis. British Journal of Pharmacology, 2022, 179, 882-899.	5.4	12
2	Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochemical Pharmacology, 2022, 197, 114884.	4.4	14
3	A Novel Approach to Enhance the Regenerative Potential of Circulating Endothelial Progenitor Cells in Patients with End-Stage Kidney Disease. Biomedicines, 2022, 10, 883.	3.2	2
4	The Placental NLRP3 Inflammasome and Its Downstream Targets, Caspase-1 and Interleukin-6, Are Increased in Human Fetal Growth Restriction: Implications for Aberrant Inflammation-Induced Trophoblast Dysfunction. Cells, 2022, 11, 1413.	4.1	10
5	Enhancing the Therapeutic Potential of Mesenchymal Stromal Cell-Based Therapies with an Anti-Fibrotic Agent for the Treatment of Chronic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 6035.	4.1	5
6	Relaxin Inhibits the Cardiac Myofibroblast NLRP3 Inflammasome as Part of Its Anti-Fibrotic Actions via the Angiotensin Type 2 and ATP (P2X7) Receptors. International Journal of Molecular Sciences, 2022, 23, 7074.	4.1	10
7	Combining mesenchymal stem cells with serelaxin provides enhanced renoprotection against 1K/DOCA/saltâ€induced hypertension. British Journal of Pharmacology, 2021, 178, 1164-1181.	5.4	12
8	Simultaneous targeting of oxidative stress and fibrosis reverses cardiomyopathyâ€induced ventricular remodelling and dysfunction. British Journal of Pharmacology, 2021, 178, 2424-2442.	5.4	10
9	SAHA attenuates Takotsubo-like myocardial injury by targeting an epigenetic Ac/Dc axis. Signal Transduction and Targeted Therapy, 2021, 6, 159.	17.1	14
10	Assessment of renal fibrosis and antiâ€fibrotic agents using a novel diagnostic and stainâ€free secondâ€harmonic generation platform. FASEB Journal, 2021, 35, e21595.	0.5	8
11	Atrial Fibrillation and Obesity. JACC: Clinical Electrophysiology, 2021, 7, 630-641.	3.2	42
12	Pulmonary myeloid cell uptake of biodegradable nanoparticles conjugated with an anti-fibrotic agent provides a novel strategy for treating chronic allergic airways disease. Biomaterials, 2021, 273, 120796.	11.4	15
13	In Aged Females, the Enhanced Pressor Response to Angiotensin II Is Attenuated By Estrogen Replacement via an Angiotensin Type 2 Receptor-Mediated Mechanism. Hypertension, 2021, 78, 128-137.	2.7	9
14	Relaxin Attenuates Organ Fibrosis via an Angiotensin Type 2 Receptor Mechanism in Aged Hypertensive Female Rats. Kidney360, 2021, 2, 1781-1792.	2.1	7
15	Comparing the renoprotective effects of BM-MSCs versus BM-MSC-exosomes, when combined with an anti-fibrotic drug, in hypertensive mice. Biomedicine and Pharmacotherapy, 2021, 144, 112256.	5.6	8
16	The efficacy and safety of pinocembrin in a sheep model of bleomycin-induced pulmonary fibrosis. PLoS ONE, 2021, 16, e0260719.	2.5	6
17	Relaxin Can Mediate Its Anti-Fibrotic Effects by Targeting the Myofibroblast NLRP3 Inflammasome at the Level of Caspase-1. Frontiers in Pharmacology, 2020, 11, 1201.	3.5	22
18	Investigation of molecular mechanisms of experimental compounds in murine models of chronic allergic airways disease using synchrotron Fourier-transform infrared microspectroscopy. Scientific Reports, 2020, 10, 11713.	3.3	2

#	Article	IF	CITATIONS
19	Inflammasomes—A Molecular Link for Altered Immunoregulation and Inflammation Mediated Vascular Dysfunction in Preeclampsia. International Journal of Molecular Sciences, 2020, 21, 1406.	4.1	35
20	Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. , 2020, 209, 107511.		63
21	Serelaxin and the AT ₂ Receptor Agonist CGP42112 Evoked a Similar, Nonadditive, Cardiac Antifibrotic Effect in High Salt-Fed Mice That Were Refractory to Candesartan Cilexetil. ACS Pharmacology and Translational Science, 2020, 3, 76-87.	4.9	15
22	The antiâ€fibrotic actions of relaxin are mediated through AT ₂ Râ€associated protein phosphatases via RXFP1â€AT ₂ R functional crosstalk in human cardiac myofibroblasts. FASEB Journal, 2020, 34, 8217-8233.	0.5	18
23	The Use of Live Cell Imaging and Automated Image Analysis to Assist With Determining Optimal Parameters for Angiogenic Assay in vitro. Frontiers in Cell and Developmental Biology, 2019, 7, 45.	3.7	7
24	Profiling histone modifications in the normal mouse kidney and after unilateral ureteric obstruction. American Journal of Physiology - Renal Physiology, 2019, 317, F606-F615.	2.7	2
25	Serelaxin inhibits the profibrotic TGFâ€Î²1/ILâ€1β axis by targeting TLRâ€4 and the NLRP3 inflammasome in cardia myofibroblasts. FASEB Journal, 2019, 33, 14717-14733.	ас 0.5	40
26	Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways. Molecular and Cellular Endocrinology, 2019, 487, 59-65.	3.2	42
27	Serelaxin enhances the therapeutic effects of human amnion epithelial cellâ€derived exosomes in experimental models of lung disease. British Journal of Pharmacology, 2019, 176, 2195-2208.	5.4	27
28	Human amnion epithelial cells and their soluble factors reduce liver fibrosis in murine nonâ€ e lcoholic steatohepatitis. Journal of Gastroenterology and Hepatology (Australia), 2019, 34, 1441-1449.	2.8	18
29	iPSC―and mesenchymoangioblastâ€derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid. FASEB Journal, 2019, 33, 6402-6411.	0.5	14
30	Relaxin and fibrosis: Emerging targets, challenges, and future directions. Molecular and Cellular Endocrinology, 2019, 487, 66-74.	3.2	18
31	AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. Journal of the American Society of Nephrology: JASN, 2019, 30, 2191-2207.	6.1	35
32	Distinct Redox Signalling following Macrophage Activation Influences Profibrotic Activity. Journal of Immunology Research, 2019, 2019, 1-15.	2.2	9
33	The efficacy of pirfenidone in a sheep model of pulmonary fibrosis. Experimental Lung Research, 2019, 45, 310-322.	1.2	12
34	Understanding relaxin signalling at the cellular level. Molecular and Cellular Endocrinology, 2019, 487, 24-33.	3.2	26
35	Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovascular Research, 2019, 115, 776-787.	3.8	165
36	Atypical cannabinoid ligands O-1602 and O-1918 administered chronically in diet-induced obesity. Endocrine Connections, 2019, 8, 203-216.	1.9	14

#	Article	IF	CITATIONS
37	Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. , 2018, 187, 61-70.		25
38	Endothelial Progenitor Cells and Vascular Health inÂDialysis Patients. Kidney International Reports, 2018, 3, 205-211.	0.8	14
39	Hexarelin treatment preserves myocardial function and reduces cardiac fibrosis in a mouse model of acute myocardial infarction. Physiological Reports, 2018, 6, e13699.	1.7	12
40	The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice. Respiratory Research, 2018, 19, 114.	3.6	27
41	CCL18 as a potential mediator of the pro-fibrotic actions of M2 macrophages in the vessel wall during hypertension. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR1-4.	0.0	Ο
42	Inhibition of the K _{Ca} 3.1 Channel Alleviates Established Pulmonary Fibrosis in a Large Animal Model. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 539-550.	2.9	26
43	Intranasal administration of mesenchymoangioblastâ€derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease. FASEB Journal, 2017, 31, 4168-4178.	0.5	21
44	ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Scientific Reports, 2017, 7, 2968.	3.3	50
45	Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension. Pharmacological Research, 2017, 116, 77-86.	7.1	38
46	Epigenetic Modifications to H3K9 in Renal Tubulointerstitial Cells after Unilateral Ureteric Obstruction and TGF-β1 Stimulation. Frontiers in Pharmacology, 2017, 8, 307.	3.5	38
47	Anti-fibrotic Potential of AT2 Receptor Agonists. Frontiers in Pharmacology, 2017, 8, 564.	3.5	58
48	Editorial: Novel Therapeutic Targets and Emerging Treatments for Fibrosis. Frontiers in Pharmacology, 2017, 8, 824.	3.5	3
49	The Anti-fibrotic Actions of Relaxin Are Mediated Through a NO-sGC-cGMP-Dependent Pathway in Renal Myofibroblasts In Vitro and Enhanced by the NO Donor, Diethylamine NONOate. Frontiers in Pharmacology, 2016, 7, 91.	3.5	36
50	Serelaxin Elicits Bronchodilation and Enhances Î ² -Adrenoceptor-Mediated Airway Relaxation. Frontiers in Pharmacology, 2016, 7, 406.	3.5	21
51	Promise and Limitations of Relaxin-based Therapies in Chronic Fibrotic Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1434-1435.	5.6	3
52	Estrogens do not protect, but androgens exacerbate, collagen accumulation in the female mouse kidney after ureteric obstruction. Life Sciences, 2016, 158, 130-136.	4.3	17
53	Serelaxin improves the therapeutic efficacy of RXFP1-expressing human amnion epithelial cells in experimental allergic airway disease. Clinical Science, 2016, 130, 2151-2165.	4.3	13
54	Antifibrotic Actions of Serelaxin – New Roles for an Old Player. Trends in Pharmacological Sciences, 2016, 37, 485-497.	8.7	28

#	Article	IF	CITATIONS
55	A single-chain derivative of the relaxin hormone is a functionally selective agonist of the G protein-coupled receptor, RXFP1. Chemical Science, 2016, 7, 3805-3819.	7.4	70
56	Qualitative and Quantitative Analysis of Histone Deacetylases in Kidney Tissue Sections. Methods in Molecular Biology, 2016, 1397, 279-289.	0.9	4
57	Structural and functional correlations in a large animal model of bleomycin-induced pulmonary fibrosis. BMC Pulmonary Medicine, 2015, 15, 81.	2.0	29
58	Synthetic Covalently Linked Dimeric Form of H2 Relaxin Retains Native RXFP1 Activity and Has Improved <i>In Vitro</i> Serum Stability. BioMed Research International, 2015, 2015, 1-9.	1.9	13
59	A novel segmental challenge model for bleomycin-induced pulmonary fibrosis in sheep. Experimental Lung Research, 2015, 41, 115-134.	1.2	26
60	Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity. Journal of the American College of Cardiology, 2015, 66, 1-11.	2.8	331
61	Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease. Stem Cell Research, 2015, 15, 495-505.	0.7	36
62	Obligatory Role for B Cells in the Development of Angiotensin Il–Dependent Hypertension. Hypertension, 2015, 66, 1023-1033.	2.7	185
63	M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H906-H917.	3.2	109
64	Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy. FASEB Journal, 2015, 29, 540-553.	0.5	70
65	Mechanistic Insights into the Contribution of Epithelial Damage to Airway Remodeling. Novel Therapeutic Targets for Asthma. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 180-192.	2.9	34
66	Characterization of a novel model incorporating airway epithelial damage and related fibrosis to the pathogenesis of asthma. Laboratory Investigation, 2014, 94, 1326-1339.	3.7	17
67	Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis. , 2014, 141, 250-260.		48
68	Low-dose maternal alcohol consumption: effects in the hearts of offspring in early life and adulthood. Physiological Reports, 2014, 2, e12087.	1.7	24
69	Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney International, 2014, 86, 75-85.	5.2	98
70	Serelaxin Is a More Efficacious Antifibrotic Than Enalapril in an Experimental Model of Heart Disease. Hypertension, 2014, 64, 315-322.	2.7	86
71	Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2014, 306, F1222-F1235.	2.7	119
72	Therapeutic Effects of Serelaxin in Acute Heart Failure. Circulation Journal, 2014, 78, 542-552.	1.6	30

#	Article	IF	CITATIONS
73	Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation. Heart Rhythm, 2013, 10, 90-100.	0.7	314
74	Trefoil Factor–2 Reverses Airway Remodeling Changes in Allergic Airways Disease. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 135-144.	2.9	26
75	Does a Nephron Deficit Exacerbate the Renal and Cardiovascular Effects of Obesity?. PLoS ONE, 2013, 8, e73095.	2.5	12
76	Anti-Inflammatory Effects of Adult Stem Cells in Sustained Lung Injury: A Comparative Study. PLoS ONE, 2013, 8, e69299.	2.5	87
77	The Anti-fibrotic Hormone Relaxin is not Reno-protective, Despite Being Active, in an Experimental Model of Type 1 Diabetes. Protein and Peptide Letters, 2013, 20, 1029-1038.	0.9	17
78	Identification of Key Residues Essential for the Structural Fold and Receptor Selectivity within the A-chain of Human Gene-2 (H2) Relaxin. Journal of Biological Chemistry, 2012, 287, 41152-41164.	3.4	21
79	Relaxin and Castration in Male Mice Protect from, but Testosterone Exacerbates, Age-Related Cardiac and Renal Fibrosis, Whereas Estrogens Are an Independent Determinant of Organ Size. Endocrinology, 2012, 153, 188-199.	2.8	27
80	Long-term mineralocorticoid receptor blockade ameliorates progression of experimental diabetic renal disease. Nephrology Dialysis Transplantation, 2012, 27, 906-912.	0.7	26
81	Minimization of Human Relaxin-3 Leading to High-Affinity Analogues with Increased Selectivity for Relaxin-Family Peptide 3 Receptor (RXFP3) over RXFP1. Journal of Medicinal Chemistry, 2012, 55, 1671-1681.	6.4	84
82	Human relaxin-2: historical perspectives and role in cancer biology. Amino Acids, 2012, 43, 1131-1140.	2.7	31
83	The regulation of fibrosis in airway remodeling in asthma. Molecular and Cellular Endocrinology, 2012, 351, 167-175.	3.2	100
84	Relaxin Signals through a RXFP1-pERK-nNOS-NO-cGMP-Dependent Pathway to Up-Regulate Matrix Metalloproteinases: The Additional Involvement of iNOS. PLoS ONE, 2012, 7, e42714.	2.5	102
85	H3 Relaxin Demonstrates Antifibrotic Properties via the RXFP1 Receptor. Biochemistry, 2011, 50, 1368-1375.	2.5	44
86	Colony-Stimulating Factor-1 Promotes Kidney Growth and Repair via Alteration of Macrophage Responses. American Journal of Pathology, 2011, 179, 1243-1256.	3.8	124
87	Relaxin Regulates Myofibroblast Contractility and Protects against Lung Fibrosis. American Journal of Pathology, 2011, 179, 2751-2765.	3.8	90
88	Relaxin remodels fibrotic healing following myocardial infarction. Laboratory Investigation, 2011, 91, 675-690.	3.7	93
89	The Relaxin Peptide Family – Structure, Function and Clinical Applications. Protein and Peptide Letters, 2011, 18, 220-229.	0.9	46
90	The Minimal Active Structure of Human Relaxin-2. Journal of Biological Chemistry, 2011, 286, 37555-37565.	3.4	52

6

#	Article	IF	CITATIONS
91	The chemically synthesized human relaxin-2 analog, B-R13/17K H2, is an RXFP1 antagonist. Amino Acids, 2010, 39, 409-416.	2.7	53
92	Prevention of Bleomycin-Induced Pulmonary Fibrosis by a Novel Antifibrotic Peptide with Relaxin-Like Activity. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 589-599.	2.5	64
93	Transplantation of Human Amnion Epithelial Cells Reduces Hepatic Fibrosis in Immunocompetent CCl ₄ -Treated Mice. Cell Transplantation, 2010, 19, 1157-1168.	2.5	148
94	Antifibrotic Properties of Relaxin: In Vivo Mechanism of Action in Experimental Renal Tubulointerstitial Fibrosis. Endocrinology, 2010, 151, 4938-4948.	2.8	64
95	Human Amnion Epithelial Cell Transplantation Abrogates Lung Fibrosis and Augments Repair. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 643-651.	5.6	194
96	Cardiovascular effects of relaxin: from basic science to clinical therapy. Nature Reviews Cardiology, 2010, 7, 48-58.	13.7	153
97	Relaxin inhibits renal myofibroblast differentiation <i>via</i> RXFP1, the nitric oxide pathway, and Smad2. FASEB Journal, 2009, 23, 1219-1229.	0.5	127
98	Relaxin Family Peptide Receptor-1 Protects against Airway Fibrosis during Homeostasis But Not against Fibrosis Associated with Chronic Allergic Airways Disease. Endocrinology, 2009, 150, 1495-1502.	2.8	21
99	Reversal of Cardiac Fibrosis and Related Dysfunction by Relaxin. Annals of the New York Academy of Sciences, 2009, 1160, 278-284.	3.8	24
100	Relaxin: An Endogenous Renoprotective Factor?. Annals of the New York Academy of Sciences, 2009, 1160, 289-293.	3.8	4
101	Investigations into the Inhibitory Effects of Relaxin on Renal Myofibroblast Differentiation. Annals of the New York Academy of Sciences, 2009, 1160, 294-299.	3.8	8
102	Role of Relaxin in Regulation of Fibrosis in the Lung. Annals of the New York Academy of Sciences, 2009, 1160, 342-347.	3.8	9
103	Structure and Activity in the Relaxin Family of Peptides. Annals of the New York Academy of Sciences, 2009, 1160, 5-10.	3.8	8
104	Evaluation of Relaxin's Antifibrotic Action by SELDIâ€TOF Mass Spectrometryâ€Based Profiling of Relaxin Knockout Mice, a Model of Progressive Fibrosis. Annals of the New York Academy of Sciences, 2009, 1160, 350-352.	3.8	0
105	Determination of Collagen Content, Concentration, and Sub-types in Kidney Tissue. Methods in Molecular Biology, 2009, 466, 223-235.	0.9	54
106	Human Umbilical Cord Mesenchymal Stem Cells Reduce Fibrosis of Bleomycin-Induced Lung Injury. American Journal of Pathology, 2009, 175, 303-313.	3.8	315
107	Relaxin and the progression of kidney disease. Current Opinion in Nephrology and Hypertension, 2009, 18, 9-14.	2.0	29
108	Relaxin family peptide receptors – from orphans to therapeutic targets. Drug Discovery Today, 2008, 13, 640-651.	6.4	65

#	Article	IF	CITATIONS
109	Relaxin Ameliorates Fibrosis in Experimental Diabetic Cardiomyopathy. Endocrinology, 2008, 149, 3286-3293.	2.8	80
110	Endogenous Relaxin Is a Naturally Occurring Modulator of Experimental Renal Tubulointerstitial Fibrosis. Endocrinology, 2007, 148, 660-669.	2.8	49
111	Relaxin Plays an Important Role in the Regulation of Airway Structure and Function. Endocrinology, 2007, 148, 4259-4266.	2.8	33
112	Comparison of Airway Remodeling in Acute, Subacute, and Chronic Models of Allergic Airways Disease. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 625-632.	2.9	103
113	P5-14. Heart Rhythm, 2006, 3, S264.	0.7	0
114	â€~Relaxin' the stiffened heart and arteries: The therapeutic potential for relaxin in the treatment of cardiovascular disease. , 2006, 112, 529-552.		77
115	Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. European Heart Journal, 2006, 27, 3045-3056.	2.2	165
116	The Relaxin Gene-Knockout Mouse: A Model of Progressive Fibrosis. Annals of the New York Academy of Sciences, 2005, 1041, 173-181.	3.8	83
117	Relaxin Regulates Collagen Overproduction Associated with Experimental Progressive Renal Fibrosis. Annals of the New York Academy of Sciences, 2005, 1041, 182-184.	3.8	6
118	Relaxin Modulates Fibroblast Function, Collagen Production, and Matrix Metalloproteinase-2 Expression by Cardiac Fibroblasts. Annals of the New York Academy of Sciences, 2005, 1041, 190-193.	3.8	35
119	Investigating the Role of Relaxin in the Regulation of Airway Fibrosis in Animal Models of Acute and Chronic Allergic Airway Disease. Annals of the New York Academy of Sciences, 2005, 1041, 194-196.	3.8	5
120	Detection, Localization, and Action of the INSL3 Receptor, LGR8, in Rat Kidney. Annals of the New York Academy of Sciences, 2005, 1041, 516-519.	3.8	6
121	The Relaxin Gene Knockout Mouse: A Model of Progressive Scleroderma. Journal of Investigative Dermatology, 2005, 125, 692-699.	0.7	53
122	Relaxin: Antifibrotic Properties and Effects in Models of Disease. Clinical Medicine and Research, 2005, 3, 241-249.	0.8	74
123	Renal Structural and Functional Repair in a Mouse Model of Reversal of Ureteral Obstruction. Journal of the American Society of Nephrology: JASN, 2005, 16, 3623-3630.	6.1	146
124	Relaxin Reverses Cardiac and Renal Fibrosis in Spontaneously Hypertensive Rats. Hypertension, 2005, 46, 412-418.	2.7	175
125	Recombinant human relaxin reduces hypoxic pulmonary hypertension in the rat. Pulmonary Pharmacology and Therapeutics, 2005, 18, 346-353.	2.6	34
126	Increased Expression of the Relaxin Receptor (LGR7) in Human Endometrium during the Secretory Phase of the Menstrual Cycle. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3477-3485.	3.6	32

#	Article	IF	CITATIONS
127	Relaxin Modulates Cardiac Fibroblast Proliferation, Differentiation, and Collagen Production and Reverses Cardiac Fibrosis in Vivo. Endocrinology, 2004, 145, 4125-4133.	2.8	264
128	Relaxin-1–deficient mice develop an age-related progression of renal fibrosis. Kidney International, 2004, 65, 2054-2064.	5.2	98
129	Relaxin Is a Key Mediator of Prostate Growth and Male Reproductive Tract Development. Laboratory Investigation, 2003, 83, 1055-1067.	3.7	83
130	Relaxin regulates fibrillin 2, but not fibrillin 1, mRNA and protein expression by human dermal fibroblasts and murine fetal skin. Archives of Biochemistry and Biophysics, 2003, 411, 47-55.	3.0	25
131	Physiological or pathological — a role for relaxin in the cardiovascular system?. Current Opinion in Pharmacology, 2003, 3, 152-158.	3.5	28
132	Relaxin: new peptides, receptors and novel actions. Trends in Endocrinology and Metabolism, 2003, 14, 207-213.	7.1	99
133	Relaxin deficiency in mice is associated with an ageâ€related progression of pulmonary fibrosis. FASEB Journal, 2003, 17, 121-123.	0.5	164
134	Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific phenotype. Cardiovascular Research, 2003, 57, 395-404.	3.8	139
135	Human Relaxin Gene 3 (H3) and the Equivalent Mouse Relaxin (M3) Gene. Journal of Biological Chemistry, 2002, 277, 1148-1157.	3.4	340
136	Lower Risk of Postinfarct Rupture in Mouse Heart Overexpressing β2-Adrenergic Receptors: Importance of Collagen Content. Journal of Cardiovascular Pharmacology, 2002, 40, 632-640.	1.9	26
137	Inotropic responses to human gene 2 (B29) relaxin in a rat model of myocardial infarction (MI): effect of pertussis toxin. British Journal of Pharmacology, 2002, 137, 710-718.	5.4	58
138	Impaired Cardiac Functional Reserve and Left Ventricular Hypertrophy in Adult Sheep After Prenatal Dexamethasone Exposure. Circulation Research, 2001, 89, 623-629.	4.5	94
139	Collagen Studies in Late Pregnant Relaxin Null Mice1. Biology of Reproduction, 2000, 63, 697-703.	2.7	116
140	Collagen in the fetal membranes of sheep: changes throughout gestation and effects of dexamethasone at 60 days. Reproduction, Fertility and Development, 1997, 9, 455.	0.4	4