
Paulo Costa Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/732146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analyzing marginal cases in differential shotgun proteomics. Bioinformatics, 2011, 27, 275-276.	4.1	474
2	PYR/PYL/RCAR family members are major <i>inâ€vivo</i> ABI1 protein phosphatase 2Câ€interacting proteins in Arabidopsis. Plant Journal, 2010, 61, 290-299.	5.7	451
3	Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nature Protocols, 2016, 11, 102-117.	12.0	257
4	PatternLab for proteomics: a tool for differential shotgun proteomics. BMC Bioinformatics, 2008, 9, 316.	2.6	127
5	Search engine processor: Filtering and organizing peptide spectrum matches. Proteomics, 2012, 12, 944-949.	2.2	107
6	XDIA: improving on the label-free data-independent analysis. Bioinformatics, 2010, 26, 847-848.	4.1	104
7	Improvements in Proteomic Metrics of Low Abundance Proteins through Proteome Equalization Using ProteoMiner Prior to MudPIT. Journal of Proteome Research, 2011, 10, 3690-3700.	3.7	86
8	Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLoS Pathogens, 2017, 13, e1006385.	4.7	76
9	Improving the TFold test for differential shotgun proteomics. Bioinformatics, 2012, 28, 1652-1654.	4.1	73
10	SIM-XL: A powerful and user-friendly tool for peptide cross-linking analysis. Journal of Proteomics, 2015, 129, 51-55.	2.4	73
11	YADA: a tool for taking the most out of high-resolution spectra. Bioinformatics, 2009, 25, 2734-2736.	4.1	67
12	Single-Step Inline Hydroxyapatite Enrichment Facilitates Identification and Quantitation of Phosphopeptides from Mass-Limited Proteomes with MudPIT. Journal of Proteome Research, 2012, 11, 2697-2709.	3.7	56
13	On best practices in the development of bioinformatics software. Frontiers in Genetics, 2014, 5, 199.	2.3	53
14	An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca. Journal of Proteomics, 2017, 151, 214-231.	2.4	50
15	Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins. Nature Protocols, 2018, 13, 431-458.	12.0	47
16	Reevaluating the Trypanosoma cruzi proteomic map: The shotgun description of bloodstream trypomastigotes. Journal of Proteomics, 2015, 115, 58-65.	2.4	44
17	PatternLab: From Mass Spectra to Labelâ€Free Differential Shotgun Proteomics. Current Protocols in Bioinformatics, 2012, 40, Unit13.19.	25.8	39
18	GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data. Proteome Science, 2009, 7, 6.	1.7	35

PAULO COSTA CARVALHO

#	Article	IF	CITATIONS
19	Toward objective evaluation of proteomic algorithms. Nature Methods, 2012, 9, 455-456.	19.0	35
20	Can the falseâ€discovery rate be misleading?. Proteomics, 2011, 11, 4105-4108.	2.2	34
21	PepExplorer: A Similarity-driven Tool for Analyzing de Novo Sequencing Results. Molecular and Cellular Proteomics, 2014, 13, 2480-2489.	3.8	33
22	Proteomic profiling of extracellular vesicles secreted from <i>Toxoplasma gondii</i> . Proteomics, 2017, 17, 1600477.	2.2	31
23	New substrates and interactors of the mycobacterial Serine/Threonine protein kinase PknG identified by a tailored interactomic approach. Journal of Proteomics, 2019, 192, 321-333.	2.4	30
24	Interrogating the Venom of the Viperid Snake Sistrurus catenatus edwardsii by a Combined Approach of Electrospray and MALDI Mass Spectrometry. PLoS ONE, 2015, 10, e0092091.	2.5	26
25	Simple, efficient and thorough shotgun proteomic analysis with PatternLab V. Nature Protocols, 2022, 17, 1553-1578.	12.0	26
26	Thymic Microenvironment Is Modified by Malnutrition and Leishmania infantum Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 252.	3.9	25
27	Analyzing Shotgun Proteomic Data with PatternLab for Proteomics. Current Protocols in Bioinformatics, 2010, 30, Unit 13.13.1-15.	25.8	24
28	Are Gastric Cancer Resection Margin Proteomic Profiles More Similar to Those from Controls or Tumors?. Journal of Proteome Research, 2012, 11, 5836-5842.	3.7	24
29	Comparative Proteomic Analysis of the Aging Soleus and Extensor Digitorum Longus Rat Muscles Using TMT Labeling and Mass Spectrometry. Journal of Proteome Research, 2013, 12, 4532-4546.	3.7	24
30	Dynamic proteomic overview of glioblastoma cells (A172) exposed to perillyl alcohol. Journal of Proteomics, 2010, 73, 1018-1027.	2.4	23
31	Chemo-Resistant Protein Expression Pattern of Glioblastoma Cells (A172) to Perillyl Alcohol. Journal of Proteome Research, 2011, 10, 153-160.	3.7	23
32	Proteomic Analysis of the Endosperm Ontogeny of <i>Jatropha curcas</i> L. Seeds. Journal of Proteome Research, 2015, 14, 2557-2568.	3.7	21
33	Seeing beyond the tip of the iceberg: A deep analysis of the venome of the Brazilian Rattlesnake, Crotalus durissus terrificus. EuPA Open Proteomics, 2015, 8, 144-156.	2.5	21
34	Proteomic Analysis of Peripheral Blood Mononuclear Cells after a High-Fat, High-Carbohydrate Meal with Orange Juice. Journal of Proteome Research, 2017, 16, 4086-4092.	3.7	21
35	A multi-protease, multi-dissociation, bottom-up-to-top-down proteomic view of the Loxosceles intermedia venom. Scientific Data, 2017, 4, 170090.	5.3	21
36	Proteomic Profiling of the Influence of Iron Availability on <i>Cryptococcus gattii</i> . Journal of Proteome Research, 2012, 11, 189-205.	3.7	20

PAULO COSTA CARVALHO

#	Article	IF	CITATIONS
37	Effectively addressing complex proteomic search spaces with peptide spectrum matching. Bioinformatics, 2013, 29, 1343-1344.	4.1	20
38	Caititu: A tool to graphically represent peptide sequence coverage and domain distribution. Journal of Proteomics, 2008, 71, 486-489.	2.4	19
39	The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism. Scientific Reports, 2017, 7, 10281.	3.3	19
40	<i>De novo</i> sequencing of proteins by mass spectrometry. Expert Review of Proteomics, 2020, 17, 595-607.	3.0	19
41	Exploring the Proteomic Landscape of a Gastric Cancer Biopsy with the Shotgun Imaging Analyzer. Journal of Proteome Research, 2014, 13, 314-320.	3.7	18
42	Proteomic profiling of nipple aspirate fluid (NAF): Exploring the complementarity of different peptide fractionation strategies. Journal of Proteomics, 2015, 117, 86-94.	2.4	18
43	Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. Journal of Proteomics, 2017, 151, 114-121.	2.4	18
44	XPlex: An Effective, Multiplex Cross-Linking Chemistry for Acidic Residues. Analytical Chemistry, 2018, 90, 6043-6050.	6.5	18
45	Proteome Analysis of Plastids from Developing Seeds of <i>Jatropha curcas</i> L. Journal of Proteome Research, 2013, 12, 5137-5145.	3.7	17
46	Time-course proteome analysis of developing extrafloral nectaries of <i>Ricinus communis</i> . Proteomics, 2016, 16, 629-633.	2.2	17
47	Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiology, 2019, 19, 128.	3.3	17
48	Deciphering the Human Brain Proteome: Characterization of the Anterior Temporal Lobe and Corpus Callosum As Part of the Chromosome 15-centric Human Proteome Project. Journal of Proteome Research, 2014, 13, 147-157.	3.7	16
49	An Evaluation of the Crystal Structure of C-terminal Truncated Apolipoprotein A-I in Solution Reveals Structural Dynamics Related to Lipid Binding. Journal of Biological Chemistry, 2016, 291, 5439-5451.	3.4	16
50	Proteomic Deep Mining the Venom of the Red-Headed Krait, Bungarus flaviceps. Toxins, 2018, 10, 373.	3.4	16
51	Charge Prediction Machine: Tool for Inferring Precursor Charge States of Electron Transfer Dissociation Tandem Mass Spectra. Analytical Chemistry, 2009, 81, 1996-2003.	6.5	15
52	Expression of the mevalonate pathway enzymes in the Lutzomyia longipalpis (Diptera: Psychodidae) sex pheromone gland demonstrated by an integrated proteomic approach. Journal of Proteomics, 2014, 96, 117-132.	2.4	15
53	Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19. Cell Death Discovery, 2022, 8, .	4.7	15
54	Proteome Analysis of the Inner Integument from Developing <i>Jatropha curcas</i> L. Seeds. Journal of Proteome Research, 2014, 13, 3562-3570.	3.7	14

4

Paulo Costa Carvalho

#	Article	IF	CITATIONS
55	A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme. Frontiers in Oncology, 2016, 6, 183.	2.8	13
56	Trypanosoma cruzi immunoproteome: Calpain-like CAP5.5 differentially detected throughout distinct stages of human Chagas disease cardiomyopathy. Journal of Proteomics, 2019, 194, 179-190.	2.4	12
57	Comparing intestinal versus diffuse gastric cancer using a PEFF-oriented proteomic pipeline. Journal of Proteomics, 2018, 171, 63-72.	2.4	11
58	Differential proteomic comparison of breast cancer secretome using a quantitative paired analysis workflow. BMC Cancer, 2019, 19, 365.	2.6	11
59	Assessing the partners of the RBP9-mRNP complex in Trypanosoma cruzi using shotgun proteomics and RNA-seq. RNA Biology, 2018, 15, 1-13.	3.1	10
60	RawVegetable $\hat{a} \in A$ data assessment tool for proteomics and cross-linking mass spectrometry experiments. Journal of Proteomics, 2020, 225, 103864.	2.4	10
61	Proteomics pinpoints alterations in grade I meningiomas of male versus female patients. Scientific Reports, 2020, 10, 10335.	3.3	10
62	Quantitative analysis of proteins secreted by Leishmania (Viannia) braziliensis strains associated to distinct clinical manifestations of American Tegumentary Leishmaniasis. Journal of Proteomics, 2021, 232, 104077.	2.4	10
63	The Role of the Trypanosoma cruzi TcNRBD1 Protein in Translation. PLoS ONE, 2016, 11, e0164650.	2.5	10
64	A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA. Journal of Proteomics, 2015, 129, 42-50.	2.4	9
65	Comprehensive identification of protein disulfide bonds with pepsin/trypsin digestion, Orbitrap HCD and Spectrum Identification Machine. Journal of Proteomics, 2019, 198, 78-86.	2.4	9
66	A fingerprint of plasma proteome alteration after local tissue damage induced by Bothrops leucurus snake venom in mice. Journal of Proteomics, 2022, 253, 104464.	2.4	9
67	Mixed-Data Acquisition: Next-Generation Quantitative Proteomics Data Acquisition. Journal of Proteomics, 2020, 222, 103803.	2.4	8
68	HI-Bone: A Scoring System for Identifying Phenylisothiocyanate-Derivatized Peptides Based on Precursor Mass and High Intensity Fragment Ions. Analytical Chemistry, 2013, 85, 3515-3520.	6.5	7
69	The influence of iron on the proteomic profile of Chromobacterium violaceum. BMC Microbiology, 2014, 14, 267.	3.3	7
70	Colorectal cancer DNA methylation patterns from patients in Manaus, Brazil. Biological Research, 2015, 48, 50.	3.4	7
71	Profiling the proteomics in honeybee worker brains submitted to the proboscis extension reflex. Journal of Proteomics, 2017, 151, 131-144.	2.4	7
72	DiagnoProt: a tool for discovery of new molecules by mass spectrometry. Bioinformatics, 2017, 33, 1883-1885.	4.1	7

#	Article	IF	CITATIONS
73	Proteomic profiling of splenic interstitial fluid of malnourished mice infected with Leishmania infantum reveals defects on cell proliferation and pro-inflammatory response. Journal of Proteomics, 2019, 208, 103492.	2.4	7
74	The effect of the dengue non-structural 1 protein expression over the HepG2 cell proteins in a proteomic approach. Journal of Proteomics, 2017, 152, 339-354.	2.4	6
75	The impact of blood-processing time on the proteome of human peripheral blood mononuclear cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140581.	2.3	6
76	Proteome remodeling in the Mycobacterium tuberculosis PknG knockout: Molecular evidence for the role of this kinase in cell envelope biogenesis and hypoxia response. Journal of Proteomics, 2021, 244, 104276.	2.4	6
77	Quantitative Proteomic Map of the Trypanosomatid Strigomonas culicis: The Biological Contribution of its Endosymbiotic Bacterium. Protist, 2019, 170, 125698.	1.5	5
78	Interactome analysis of the human Capâ€specific mRNA (nucleosideâ€2â€2â€Oâ€)â€methyltransferase 1 (hMTr1) protein. Journal of Cellular Biochemistry, 2019, 120, 5597-5611.) 2.6	5
79	Proteogenomic Analysis Reveals Proteins Involved in the First Step of Adipogenesis in Human Adipose-Derived Stem Cells. Stem Cells International, 2021, 2021, 1-14.	2.5	5
80	Tools and challenges for diversityâ€driven proteomics in Brazil. Proteomics, 2012, 12, 2601-2606.	2.2	4
81	Using PepExplorer to Filter and Organize <i>De Novo</i> Peptide Sequencing Results. Current Protocols in Bioinformatics, 2015, 51, 13.27.1-13.27.9.	25.8	4
82	Proteomic assessment of colorectal cancers and respective resection margins from patients of the Amazon state of Brazil. Journal of Proteomics, 2017, 154, 59-68.	2.4	4
83	Top-Down Garbage Collector: a tool for selecting high-quality top-down proteomics mass spectra. Bioinformatics, 2019, 35, 3489-3490.	4.1	4
84	Glycolytic profile shift and antioxidant triggering in symbiont-free and H2O2-resistant Strigomonas culicis. Free Radical Biology and Medicine, 2020, 146, 392-401.	2.9	4
85	Proteomics reveals that quinoa bioester promotes replenishing effects in epidermal tissue. Scientific Reports, 2020, 10, 19392.	3.3	4
86	DiagnoTop: A Computational Pipeline for Discriminating Bacterial Pathogens without Database Search. Journal of the American Society for Mass Spectrometry, 2021, 32, 1295-1299.	2.8	4
87	Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer's Disease Mouse Model. Cells, 2021, 10, 1583.	4.1	4
88	Using SIM-XL to identify and annotate cross-linked peptides analyzed by mass spectrometry. Protocol Exchange, 0, , .	0.3	4
89	Dataset of proteins mapped on HepG2 cells and those differentially abundant after expression of the dengue non-structural 1 protein. Data in Brief, 2017, 10, 248-263.	1.0	3
90	A proteomic glimpse into the oncogenesis of prostate cancer. Journal of Applied Biomedicine, 2018, 16, 328-336.	1.7	3

#	Article	IF	CITATIONS
91	Proteomic changes in Trypanosoma cruzi epimastigotes treated with the proapoptotic compound PAC-1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140582.	2.3	3
92	Synthesis, LC-MS/MS analysis, and biological evaluation of two vaccine candidates against ticks based on the antigenic PO peptide from R. sanguineus linked to the p64K carrier protein from Neisseria meningitidis. Analytical and Bioanalytical Chemistry, 2021, 413, 5885-5900.	3.7	3
93	Efeito do álcool perÃ l ico na expressão gênica de células de adenocarcinoma de pulmão humano. Jornal Brasileiro De Pneumologia, 2005, 31, 511-515.	0.7	2
94	Marcadores séricos e espectrometria de massa no diagnóstico do câncer. Jornal Brasileiro De Patologia E Medicina Laboratorial, 2006, 42, 431.	0.3	2
95	Considerations about gastric cancer proteomics. Revista Do Colegio Brasileiro De Cirurgioes, 2016, 43, 395-397.	0.6	2
96	Identification of potential targets for an anticoagulant pectin. Journal of Proteomics, 2017, 151, 243-250.	2.4	2
97	Characterizing protein conformers by cross-linking mass spectrometry and pattern recognition. Bioinformatics, 2021, 37, 3035-3037.	4.1	2
98	Refolding of metacaspase 5 from Trypanosoma cruzi, structural characterization and the influence of c-terminal in protein recombinant production. Protein Expression and Purification, 2022, 191, 106007.	1.3	2
99	Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II From Bothrops asper Venom. Frontiers in Molecular Biosciences, 2021, 8, 787368.	3.5	2
100	Detecção molecular da reativação simultânea de VZV e HSV em paciente com história clÃnica de roseola infantum. Jornal Brasileiro De Patologia E Medicina Laboratorial, 2003, 39, 207.	0.3	1
101	A quantitation module for isotope-labeled peptides integrated into PatternLab for proteomics. Journal of Proteomics, 2019, 202, 103371.	2.4	1
102	Data on antigen recognition hindrance by antibodies covalently immobilized to Protein G magnetic beads by dimethyl pimelimidate (DMP) cross-linking. Data in Brief, 2019, 22, 516-521.	1.0	1
103	Editorial (Thematic Issue: Genomics and Proteomics behind Drug Design). Current Topics in Medicinal Chemistry, 2014, 14, 343-343.	2.1	0
104	Computational proteomics: Integrating mass spectral data into a biological context. Journal of Proteomics, 2015, 129, 1-2.	2.4	0
105	Editorial. Journal of Proteomics, 2020, 228, 103937.	2.4	0
106	Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra. Journal of Proteomics, 2021, 245, 104282.	2.4	0
107	Cross-linking mass spectrometry reveals structural insights of the glutamine synthetase from Leishmania braziliensis. Memorias Do Instituto Oswaldo Cruz, 2022, 116, e210209.	1.6	0