Gonzalo E Yévenes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7321430/publications.pdf

Version: 2024-02-01

40 papers 1,892 citations

279798 23 h-index 315739 38 g-index

40 all docs

40 docs citations

times ranked

40

1992 citing authors

#	Article	IF	CITATIONS
1	Glycine Receptor Subtypes and Their Roles in Nociception and Chronic Pain. Frontiers in Molecular Neuroscience, 2022, 15, 848642.	2.9	9
2	Glycine Receptors in Spinal Nociceptive Control—An Update. Biomolecules, 2021, 11, 846.	4.0	24
3	Contribution of GlyR $\hat{1}\pm3$ Subunits to the Sensitivity and Effect of Ethanol in the Nucleus Accumbens. Frontiers in Molecular Neuroscience, 2021, 14, 756607.	2.9	4
4	Modulatory Actions of the Glycine Receptor \hat{I}^2 Subunit on the Positive Allosteric Modulation of Ethanol in $\hat{I}\pm2$ Containing Receptors. Frontiers in Molecular Neuroscience, 2021, 14, 763868.	2.9	3
5	Inhibition of the Glycine Receptor alpha 3 Function by Colchicine. Frontiers in Pharmacology, 2020, 11, 1143.	3.5	O
6	Changes in PGCâ€1α/SIRT1 Signaling Impact on Mitochondrial Homeostasis in Amyloid-Beta Peptide Toxicity Model. Frontiers in Pharmacology, 2020, 11, 709.	3.5	27
7	Modulation of glycine receptor single-channel conductance by intracellular phosphorylation. Scientific Reports, 2020, 10, 4804.	3.3	14
8	Altered Glutaminase 1 Activity During Neurulation and Its Potential Implications in Neural Tube Defects. Frontiers in Pharmacology, 2020, 11, 900.	3.5	6
9	Pentameric Ligand-Gated Ion Channels as Pharmacological Targets Against Chronic Pain. Frontiers in Pharmacology, 2020, 11, 167.	3.5	8
10	Editorial: Celebrating 40 Years of the Chilean Society of Pharmacology. Frontiers in Pharmacology, 2020, 11, 623195.	3. 5	0
11	Large Intracellular Domain-Dependent Effects of Positive Allosteric Modulators on Glycine Receptors. ACS Chemical Neuroscience, 2019, 10, 2551-2559.	3.5	14
12	Inhibitory Actions of Tropeines on the $\hat{l}\pm 3$ Glycine Receptor Function. Frontiers in Pharmacology, 2019, 10, 331.	3.5	4
13	$17~{\rm Oxo}$ Sparteine and Lupanine, Obtained from Cytisus scoparius, Exert a Neuroprotection against Soluble Oligomers of Amyloid- ${\rm \hat{l}}^2$ Toxicity by Nicotinic Acetylcholine Receptors. Journal of Alzheimer's Disease, 2019, 67, 343-356.	2.6	8
14	P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer's disease. Neuropharmacology, 2018, 128, 366-378.	4.1	34
15	Glycine receptors and glycine transporters: targets for novel analgesics?. Cellular and Molecular Life Sciences, 2018, 75, 447-465.	5.4	61
16	Cytotoxicity and in vivo plasma kinetic behavior of surface-functionalized PAMAM dendrimers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2227-2234.	3.3	27
17	Presence of Inhibitory Glycinergic Transmission in Medium Spiny Neurons in the Nucleus Accumbens. Frontiers in Molecular Neuroscience, 2018, 11, 228.	2.9	25
18	Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization. Nanomaterials, 2018, 8, 7.	4.1	30

#	Article	IF	CITATIONS
19	Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Molecular Pharmacology, 2016, 90, 318-325.	2.3	65
20	Reversal of Ethanol-induced Intoxication by a Novel Modulator of $\hat{Gl^2l^3}$ Protein Potentiation of the Glycine Receptor. Journal of Biological Chemistry, 2016, 291, 18791-18798.	3.4	6
21	Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nature Communications, 2016, 7, 13365.	12.8	67
22	Functional modulation of glycine receptors by the alkaloid gelsemine. British Journal of Pharmacology, 2016, 173, 2263-2277.	5.4	38
23	Phosphorylation state–dependent modulation of spinal glycine receptors alleviates inflammatory pain. Journal of Clinical Investigation, 2016, 126, 2547-2560.	8.2	49
24	Antihyperalgesia by α2-GABAA Receptors Occurs Via a Genuine Spinal Action and Does Not Involve Supraspinal Sites. Neuropsychopharmacology, 2014, 39, 477-487.	5.4	43
25	Extracellular Signal-regulated Kinase and Glycogen Synthase Kinase 3β Regulate Gephyrin Postsynaptic Aggregation and GABAergic Synaptic Function in a Calpain-dependent Mechanism. Journal of Biological Chemistry, 2013, 288, 9634-9647.	3.4	98
26	Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control. Physiological Reviews, 2012, 92, 193-235.	28.8	312
27	The Basic Property of Lys385 Is Important for Potentiation of the Human $\hat{l}\pm 1$ Glycine Receptor by Ethanol. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 339-349.	2.5	9
28	Chronic Pain States: Pharmacological Strategies to Restore Diminished Inhibitory Spinal Pain Control. Annual Review of Pharmacology and Toxicology, 2012, 52, 111-133.	9.4	134
29	A Single Phenylalanine Residue in the Main Intracellular Loop of $\hat{l}\pm 1\hat{l}^3$ -Aminobutyric Acid Type A and Glycine Receptors Influences Their Sensitivity to Propofol. Anesthesiology, 2011, 115, 464-473.	2.5	33
30	Allosteric modulation of glycine receptors. British Journal of Pharmacology, 2011, 164, 224-236.	5.4	89
31	Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 379-384.	7.1	183
32	Activated G Protein $\hat{l}\pm s$ Subunits Increase the Ethanol Sensitivity of Human Glycine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 386-393.	2.5	10
33	Molecular Sites for the Positive Allosteric Modulation of Glycine Receptors by Endocannabinoids. PLoS ONE, 2011, 6, e23886.	2.5	57
34	Molecular Requirements for Ethanol Differential Allosteric Modulation of Glycine Receptors Based on Selective $G\hat{l}^2\hat{l}^3$ Modulation. Journal of Biological Chemistry, 2010, 285, 30203-30213.	3.4	44
35	Blockade of Ethanol-Induced Potentiation of Glycine Receptors by a Peptide That Interferes with GÎ2Î3 Binding. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 933-939.	2.5	22
36	A selective $G\hat{I}^2\hat{I}^3$ -linked intracellular mechanism for modulation of a ligand-gated ion channel by ethanol. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20523-20528.	7.1	65

#	Article	IF	CITATIONS
37	Molecular Determinants for G Protein $\hat{i}^2\hat{i}^3$ Modulation of Ionotropic Glycine Receptors. Journal of Biological Chemistry, 2006, 281, 39300-39307.	3.4	54
38	Modulation of glycine-activated ion channel function by G-protein $\hat{l}^2\hat{l}^3$ subunits. Nature Neuroscience, 2003, 6, 819-824.	14.8	94
39	GABA-A Receptors as Molecular Sites of Ethanol Action. Direct or Indirect Actions?. Current Topics in Medicinal Chemistry, 2002, 2, 869-885.	2.1	99
40	Glycine Receptors Involved in Synaptic Transmission Are Selectively Regulated by the Cytoskeleton in Mouse Spinal Neurons. Journal of Neurophysiology, 2002, 87, 640-644.	1.8	23