L G Branco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7320497/publications.pdf

Version: 2024-02-01

136950 189892 4,132 187 32 50 citations h-index g-index papers 189 189 189 2599 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Autonomic Disbalance During Systemic Inflammation is Associated with Oxidative Stress Changes in Sepsis Survivor Rats. Inflammation, 2022, 45, 1239-1253.	3.8	2
2	Recent Advances in Molecular Hydrogen Research Reducing Exercise-Induced Oxidative Stress and Inflammation. Current Pharmaceutical Design, 2021, 27, 731-736.	1.9	10
3	Acetylcholinesterase Inhibition Attenuates Lipopolysaccharideâ€Induced Hypotension in Unanesthetized Hypertensive Rats. FASEB Journal, 2021, 35, .	0.5	O
4	DREADD Activation of Leptin Receptor Positive Neurons in The Nucleus of the Solitary Tract During Obstructive Sleep Apnea in Obese Mice. FASEB Journal, 2021, 35, .	0.5	0
5	Role of hydrogen sulfide in ventilatory responses to hypercapnia in the medullary raphe of adult rats. Experimental Physiology, 2021, 106, 1992-2001.	2.0	7
6	Molecular hydrogen downregulates acute exhaustive exercise-induced skeletal muscle damage. Canadian Journal of Physiology and Pharmacology, 2021, 99, 812-820.	1.4	15
7	5-HT neurons of the medullary raphe contribute to respiratory control in toads. Respiratory Physiology and Neurobiology, 2021, 293, 103717.	1.6	3
8	Acute autonomic effects of rose oxide on cardiovascular parameters of Wistar and spontaneously hypertensive rats. Life Sciences, 2021, 287, 120107.	4.3	0
9	Inhaled molecular hydrogen attenuates intense acute exercise-induced hippocampal inflammation in sedentary rats. Neuroscience Letters, 2020, 715, 134577.	2.1	10
10	Increased hypothalamic hydrogen sulphide contributes to endotoxin tolerance by downâ€modulating PGE ₂ production. Acta Physiologica, 2020, 228, e13373.	3.8	9
11	Systemic serotonin inhibits brown adipose tissue sympathetic nerve activity via a GABA input to the dorsomedial hypothalamus, not via 5HT _{1A} receptor activation in raphe pallidus. Acta Physiologica, 2020, 228, e13401.	3.8	13
12	Citral-induced analgesia is associated with increased spinal serotonin, reduced spinal nociceptive signaling, and reduced systemic oxidative stress in arthritis. Journal of Ethnopharmacology, 2020, 250, 112486.	4.1	12
13	Hypothermic Effect of Acute Citral Treatment during LPS-induced Systemic Inflammation in Obese Mice: Reduction of Serum TNF-α and Leptin Levels. Biomolecules, 2020, 10, 1454.	4.0	11
14	Can selective serotonin reuptake inhibitors have a neuroprotective effect during COVID-19?. European Journal of Pharmacology, 2020, 889, 173629.	3.5	23
15	Increased lipopolysaccharideâ€induced hypothermia in neurogenic hypertension is caused by reduced hypothalamic PGE ₂ production and increased heat loss. Journal of Physiology, 2020, 598, 4663-4680.	2.9	7
16	Baroreceptor denervation reduces inflammatory status but worsens cardiovascular collapse during systemic inflammation. Scientific Reports, 2020, 10, 6990.	3.3	5
17	Central leukotrienes modulate fever tolerance to LPS in rats. Journal of Thermal Biology, 2019, 84, 245-249.	2.5	1
18	Propargylglycine decreases neuro-immune interaction inducing pain response in temporomandibular joint inflammation model. Nitric Oxide - Biology and Chemistry, 2019, 93, 90-101.	2.7	10

#	Article	IF	Citations
19	Splenic anti-inflammatory reflex in immune tolerance. Journal of Thermal Biology, 2019, 85, 102411.	2.5	2
20	Neuroinflammation in the NTS is associated with changes in cardiovascular reflexes during systemic inflammation. Journal of Neuroinflammation, 2019, 16, 125.	7.2	31
21	Sex differences and the role of ovarian hormones in site-specific nociception of SHR. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R223-R231.	1.8	5
22	Central serotonin prevents hypotension and hypothermia and reduces plasma and spleen cytokine levels during systemic inflammation. Brain, Behavior, and Immunity, 2019, 80, 255-265.	4.1	12
23	Central administration of aminooxyacetate, an inhibitor of H2S production, affects thermoregulatory but not cardiovascular and ventilatory responses to hypercapnia in spontaneously hypertensive rats. Respiratory Physiology and Neurobiology, 2019, 263, 38-46.	1.6	8
24	Molecular hydrogen potentiates hypothermia and prevents hypotension and fever in LPS-induced systemic inflammation. Brain, Behavior, and Immunity, 2019, 75, 119-128.	4.1	28
25	The therapeutic potential of cystathionine gamma-lyase in temporomandibular inflammation-induced orofacial hypernociception. Physiology and Behavior, 2018, 188, 128-133.	2.1	10
26	Endogenous peripheral hydrogen sulfide is propyretic: its permissive role in brown adipose tissue thermogenesis in rats. Experimental Physiology, 2018, 103, 397-407.	2.0	11
27	Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status. Free Radical Biology and Medicine, 2018, 129, 186-193.	2.9	39
28	Experimental sepsis induces sustained inflammation and acetylcholinesterase activity impairment in the hypothalamus. Journal of Neuroimmunology, 2018, 324, 143-148.	2.3	21
29	Central fractalkine stimulates central prostaglandin E2 production and induces systemic inflammatory responses. Brain Research Bulletin, 2018, 140, 311-317.	3.0	0
30	Anxiolytic-like effect of hydrogen sulfide (H2S) in rats exposed and re-exposed to the elevated plus-maze and open field tests. Neuroscience Letters, 2017, 642, 77-85.	2.1	18
31	Central serotonin attenuates LPS-induced systemic inflammation. Brain, Behavior, and Immunity, 2017, 66, 372-381.	4.1	19
32	Antipyretic Effects of Citral and Possible Mechanisms of Action. Inflammation, 2017, 40, 1735-1741.	3.8	10
33	Involvement of endogenous central hydrogen sulfide (H ₂ S) in hypoxia-induced hypothermia in spontaneously hypertensive rats. Canadian Journal of Physiology and Pharmacology, 2017, 95, 157-162.	1.4	6
34	Excitatory Modulation of the preBötzinger Complex Inspiratory Rhythm Generating Network by Endogenous Hydrogen Sulfide. Frontiers in Physiology, 2017, 8, 452.	2.8	12
35	Effect of Physical Exercise on the Febrigenic Signaling is Modulated by Preoptic Hydrogen Sulfide Production. PLoS ONE, 2017, 12, e0170468.	2.5	9
36	Activation of locus coeruleus heme oxygenase-carbon monoxide pathway promoted an anxiolytic-like effect in rats. Brazilian Journal of Medical and Biological Research, 2016, 49, e5135.	1.5	8

#	Article	IF	Citations
37	Bone repair: Effects of physical exercise and LPS systemic exposition. Injury, 2016, 47, 1828-1834.	1.7	5
38	Cryogenic role of central endogenous hydrogen sulfide in the rat model of endotoxic shock. Brain Research, 2016, 1650, 218-223.	2.2	6
39	Role of central hydrogen sulfide on ventilatory and cardiovascular responses to hypoxia in spontaneous hypertensive rats. Respiratory Physiology and Neurobiology, 2016, 231, 21-27.	1.6	12
40	Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent. Brazilian Journal of Medical and Biological Research, 2014, 47, 1057-1061.	1.5	1
41	Involvement of endogenous hydrogen sulfide (H2S) in the rostral ventrolateral medulla (RVLM) in hypoxia-induced hypothermia. Brain Research Bulletin, 2014, 108, 94-99.	3.0	9
42	Endogenous preoptic hydrogen sulphide attenuates hypoxia-induced hyperventilation. Acta Physiologica, 2014, 210, 913-927.	3.8	18
43	Central hydrogen sulphide mediates ventilatory responses to hypercapnia in adult conscious rats. Acta Physiologica, 2014, 212, 239-247.	3 . 8	18
44	High-fat diet induces site-specific unresponsiveness to LPS-stimulated STAT3 activation in the hypothalamus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R34-R44.	1.8	11
45	Endogenous hydrogen sulfide in the rostral ventrolateral medulla/B¶tzinger complex downregulates ventilatory responses to hypoxia. Respiratory Physiology and Neurobiology, 2014, 200, 97-104.	1.6	14
46	Role of hydrogen sulfide in the formalin-induced orofacial pain in rats. European Journal of Pharmacology, 2014, 738, 49-56.	3.5	23
47	Gaseous Mediators in Temperature Regulation. , 2014, 4, 1301-1338.		26
48	Effect of chronic ethanol exposure on rat ventilatory responses to hypoxia and hypercapnia. Clinics, 2014, 69, 360-366.	1.5	5
49	Temperature and respiratory function in ectothermic vertebrates. Journal of Thermal Biology, 2013, 38, 55-63.	2.5	19
50	Serotonergic neurons in the nucleus raph \tilde{A} © obscurus are not involved in the ventilatory and thermoregulatory responses to hypoxia in adult rats. Respiratory Physiology and Neurobiology, 2013, 187, 139-148.	1.6	13
51	Hydrogen sulfide inhibits preoptic prostaglandin E2 production during endotoxemia. Experimental Neurology, 2013, 240, 88-95.	4.1	29
52	Glucocorticoids downregulate systemic nitric oxide synthesis and counteract overexpression of hepatic heme oxygenase-1 during endotoxin tolerance. Canadian Journal of Physiology and Pharmacology, 2013, 91, 861-865.	1.4	7
53	Role of hydrogen sulfide (H2S) on the ventilatory responses to hypercapnia. FASEB Journal, 2013, 27, lb870.	0.5	0
54	Hydrogen sulfide as a cryogenic mediator of hypoxia-induced anapyrexia. Neuroscience, 2012, 201, 146-156.	2.3	36

#	Article	IF	Citations
55	Interaction between the carbon monoxide and nitric oxide pathways in the locus coeruleus during fever. Neuroscience, 2012, 206, 69-80.	2.3	18
56	Opioid <i>μ</i> â€receptors in the rostral medullary raphe modulate hypoxiaâ€induced hyperpnea in unanesthetized rats. Acta Physiologica, 2012, 204, 435-442.	3.8	11
57	Combined ventilatory responses to aerial hypoxia and temperature in the South American lungfish Lepidosiren paradoxa. Journal of Thermal Biology, 2011, 36, 521-526.	2.5	9
58	Exogenous ghrelin attenuates endotoxin fever in rats. Peptides, 2011, 32, 2372-2376.	2.4	17
59	Ionotropic glutamatergic receptors in the rostral medullary raphe modulate hypoxia and hypercapnia-induced hyperpnea. Respiratory Physiology and Neurobiology, 2011, 175, 104-111.	1.6	6
60	Involvement of the heme oxygenase–carbon monoxide–cGMP pathway in the nociception induced by acute painful stimulus in rats. Brain Research, 2011, 1385, 107-113.	2.2	16
61	Serotonergic neurons in the nucleus raphe obscurus contribute to interaction between central and peripheral ventilatory responses to hypercapnia. Pflugers Archiv European Journal of Physiology, 2011, 462, 407-418.	2.8	42
62	Reduced stress fever is accompanied by increased glucocorticoids and reduced PGE2 in adult rats exposed to endotoxin as neonates. Journal of Neuroimmunology, 2010, 225, 77-81.	2.3	16
63	Propyretic role of the locus coeruleus nitric oxide pathway. Experimental Physiology, 2010, 95, 669-677.	2.0	10
64	Gaseous neurotransmitters and their role in anapyrexia. Frontiers in Bioscience - Elite, 2010, E2, 948-960.	1.8	3
65	Central NO–cGMP pathway in thermoregulation and survival rate during polymicrobial sepsis. Canadian Journal of Physiology and Pharmacology, 2010, 88, 113-120.	1.4	2
66	Antinociception synergy between the peripheral and spinal sites of the heme oxygenase-carbon monoxide pathway. Brazilian Journal of Medical and Biological Research, 2009, 42, 141-147.	1.5	18
67	Thermoregulation and Vasopressin Secretion during Polymicrobial Sepsis. NeuroImmunoModulation, 2009, 16, 45-53.	1.8	28
68	Commentaries on Viewpoint: Central chemoreception is a complex system function that involves multiple brain stem sites. Journal of Applied Physiology, 2009, 106, 1467-1470.	2.5	6
69	Role of preoptic opioid receptors in the body temperature reduction during hypoxia. Brain Research, 2009, 1286, 66-74.	2.2	24
70	Midbrain Structures and Control of Ventilation in Amphibians. , 2009, , 241-261.		0
71	5â€HT _{1A} , but not 5â€HT ₂ and 5â€HT ₇ , receptors in the nucleus raphe magnus modulate hypoxiaâ€induced hyperpnoea. Acta Physiologica, 2008, 193, 403-414.	3.8	25
72	Role of the spinal cord heme oxygenaseâ€"carbon monoxideâ€"cGMP pathway in the nociceptive response of rats. European Journal of Pharmacology, 2008, 581, 71-76.	3.5	13

#	Article	IF	Citations
73	Brain monoaminergic neurons and ventilatory control in vertebrates. Respiratory Physiology and Neurobiology, 2008, 164, 112-122.	1.6	18
74	Role of central nitric oxide in behavioral thermoregulation of toads during hypoxia. Physiology and Behavior, 2008, 95, 101-107.	2.1	10
75	Role of locus coeruleus heme oxygenase–carbon monoxide–cGMP pathway during hypothermic response to restraint. Brain Research Bulletin, 2008, 75, 526-532.	3.0	8
76	Role of midbrain in the control of breathing in anuran amphibians. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R447-R457.	1.8	19
77	5-HT2A serotoninergic receptor in the locus coeruleus participates in the first phase of lipopolysaccharide-induced fever. Canadian Journal of Physiology and Pharmacology, 2007, 85, 497-501.	1.4	2
78	Raphe magnus nucleus is involved in ventilatory but not hypothermic response to CO ₂ . Journal of Applied Physiology, 2007, 103, 1780-1788.	2.5	56
79	Reduced central c-fos expression and febrile response to repeated LPS injection into periodontal tissue of rats. Brain Research, 2007, 1152, 57-63.	2.2	2
80	Physiology of temperature regulation: Comparative aspects. Comparative Biochemistry and Physiology Part A, Molecular & Discourant Physiology, 2007, 147, 616-639.	1.8	205
81	Role of the peripheral heme oxygenase–carbon monoxide pathway on the nociceptive response of rats to the formalin test: Evidence for a cGMP signaling pathway. European Journal of Pharmacology, 2007, 556, 55-61.	3.5	39
82	Role of the locus coeruleus noradrenergic neurons on the hypercapnic ventilatory response. FASEB Journal, 2007, 21, A918.	0.5	0
83	Serotoninergic receptors in the anteroventral preoptic region modulate the hypoxic ventilatory response. Respiratory Physiology and Neurobiology, 2006, 153, 1-13.	1.6	19
84	Respiratory and body temperature modulation by adenosine A1 receptors in the anteroventral preoptic region during normoxia and hypoxia. Respiratory Physiology and Neurobiology, 2006, 153, 115-125.	1.6	35
85	nNOS is involved in behavioral thermoregulation of newborn rats during hypoxia. Physiology and Behavior, 2006, 89, 681-686.	2.1	6
86	Neural Substrate of Cold-Seeking Behavior in Endotoxin Shock. PLoS ONE, 2006, 1, e1.	2.5	142
87	Coldâ€seeking behavior as a thermoregulatory strategy in systemic inflammation. European Journal of Neuroscience, 2006, 23, 3359-3367.	2.6	120
88	Anapyrexia during hypoxia. Journal of Thermal Biology, 2006, 31, 82-89.	2.5	24
89	New role of the trigeminal nerve as a neuronal pathway signaling brain in acute periodontitis: participation of local prostaglandins. Pflugers Archiv European Journal of Physiology, 2006, 453, 73-82.	2.8	26
90	Role of the locus coeruleus carbon monoxide pathway in endotoxin fever in rats. Pflugers Archiv European Journal of Physiology, 2006, 453, 471-476.	2.8	21

#	Article	IF	Citations
91	Central heme oxygenase–carbon monoxide pathway participates in the lipopolysaccharide-induced tolerance in rats. Brain Research, 2006, 1111, 83-89.	2.2	8
92	Lesion of the anteroventral third ventricle (AV3V) reduces hypothalamic activation and hypophyseal hormone secretion induced by lipopolysaccharide in rats. Brain Research, 2006, 1115, 83-91.	2.2	12
93	Locus coeruleus is a central chemoreceptive site in toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R997-R1006.	1.8	34
94	Serotoninergic receptors in the anteroventral preoptic region modulates the hypoxic ventilatory response. FASEB Journal, 2006, 20, LB30.	0.5	0
95	Locus coeruleus participates in amphibian central chemoreception. FASEB Journal, 2006, 20, A786.	0.5	0
96	Involvement of serotoninergic receptors in the anteroventral preoptic region on hypoxia-induced hypothermia. Brain Research, 2005, 1044, 16-24.	2.2	31
97	Vasopressin release during endotoxaemic shock in mice lacking inducible nitric oxide synthase. Pflugers Archiv European Journal of Physiology, 2005, 450, 390-394.	2.8	31
98	Role of nitric oxide in tolerance to lipopolysaccharide in mice. Journal of Applied Physiology, 2005, 98, 1322-1327.	2.5	29
99	Glutamatergic receptors of the rostral ventrolateral medulla are involved in the ventilatory response to hypoxia. Respiratory Physiology and Neurobiology, 2005, 146, 125-134.	1.6	9
100	Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia. Brazilian Journal of Medical and Biological Research, 2004, 37, 1581-1589.	1.5	6
101	Thermoeffector neuronal pathways in fever: a study in rats showing a new role of the locus coeruleus. Journal of Physiology, 2004, 558, 283-294.	2.9	68
102	Nitric oxide pathway in the nucleus raphe magnus modulates hypoxic ventilatory response but not anapyrexia in rats. Brain Research, 2004, 1017, 39-45.	2.2	12
103	Evidence for thermoregulation by dopamine D1 and D2 receptors in the anteroventral preoptic region during normoxia and hypoxia. Brain Research, 2004, 1030, 165-171.	2.2	39
104	Regulation of breathing and body temperature of a burrowing rodent during hypoxic–hypercapnia. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 138, 97-104.	1.8	21
105	The ventilatory response to environmental hypercarbia in the South American rattlesnake, Crotalus durissus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 281-291.	1.5	19
106	Arginine vasopressin in fever: a still unsolved puzzle. Journal of Thermal Biology, 2004, 29, 407-411.	2.5	2
107	Role of l-glutamate in the locus coeruleus of rats in hypoxia-induced hyperventilation and anapyrexia. Respiratory Physiology and Neurobiology, 2004, 139, 157-166.	1.6	11
108	Nucleus isthmi and control of breathing in amphibians. Respiratory Physiology and Neurobiology, 2004, 143, 177-186.	1.6	19

#	Article	IF	Citations
109	Role of nitric oxide in thermoregulation during septic shock: involvement of vasopressin. Pflugers Archiv European Journal of Physiology, 2003, 447, 175-180.	2.8	30
110	Nitric oxide in the rostral ventrolateral medulla modulates hyperpnea but not anapyrexia induced by hypoxia. Brain Research, 2003, 977, 231-238.	2.2	14
111	Fever induced by platelet-derived growth factor, in contrast to fever induced by lipopolysaccharide, depends only on nitric oxide, but not on carbon monoxide pathway. European Journal of Pharmacology, 2003, 467, 133-140.	3.5	4
112	Central nNOS is involved in restraint stress-induced fever: evidence for a cGMP pathway. Physiology and Behavior, 2003, 80, 139-145.	2.1	13
113	Role of the brain heme oxygenase-carbon monoxide pathway in stress fever in rats. Neuroscience Letters, 2003, 341, 193-196.	2.1	19
114	The nucleus raphe magnus modulates hypoxia-induced hyperventilation but not anapyrexia in rats. Neuroscience Letters, 2003, 347, 121-125.	2.1	32
115	Role of glutamate in the nucleus isthmi on the hypoxia- and hypercarbia-induced hyperventilation of toads. Respiratory Physiology and Neurobiology, 2003, 135, 47-58.	1.6	11
116	Lactate as a modulator of hypoxia-induced hyperventilation. Respiratory Physiology and Neurobiology, 2003, 138, 37-44.	1.6	15
117	Role of l-glutamate in systemic AVP-induced hypothermia. Journal of Applied Physiology, 2003, 94, 271-277.	2.5	29
118	Fever and anapyrexia in systemic inflammation intracellular signaling by cyclic nucleotides. Frontiers in Bioscience - Landmark, 2003, 8, s1398-1408.	3.0	28
119	Indomethacin impairs LPS-induced behavioral fever in toads. Journal of Applied Physiology, 2002, 93, 512-516.	2.5	30
120	Antipyretic role of the NO-cGMP pathway in the anteroventral preoptic region of the rat brain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R584-R593.	1.8	59
121	A neurochemical mechanism for hypoxia-induced anapyrexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1412-R1422.	1.8	42
122	Hypoxia-Induced Anapyrexia: Implications and Putative Mediators. Annual Review of Physiology, 2002, 64, 263-288.	13.1	142
123	Involvement of neuronal nitric oxide synthase in restraint stress-induced fever in rats. Physiology and Behavior, 2002, 75, 261-266.	2.1	18
124	Central heme oxygenase–carbon monoxide pathway in the control of breathing under normoxia and hypoxia. Respiratory Physiology and Neurobiology, 2002, 130, 151-160.	1.6	12
125	Cardiovascular responses to chemoreflex activation with potassium cyanide or hypoxic hypoxia in awake rats. Autonomic Neuroscience: Basic and Clinical, 2002, 97, 110-115.	2.8	69
126	Chemical lesions of the nucleus isthmi increase the hypoxic and hypercarbic drive to breathing of toads. Respiratory Physiology and Neurobiology, 2002, 132, 289-299.	1.6	18

#	Article	IF	Citations
127	Central dopamine modulates anapyrexia but not hyperventilation induced by hypoxia. Journal of Applied Physiology, 2002, 92, 975-981.	2.5	22
128	Role of the preoptic carbon monoxide pathway in endotoxin fever in rats. Brain Research, 2002, 927, 27-34.	2.2	10
129	Role of preoptic second messenger systems (cAMP and cGMP) in the febrile response. Brain Research, 2002, 944, 135-145.	2.2	45
130	Role of the haem oxygenase-carbon monoxide pathway in insulin-induced hypothermia: evidence for carbon monoxide involvement. Pflugers Archiv European Journal of Physiology, 2002, 444, 244-250.	2.8	7
131	Is lactate a mediator of hypoxia-induced anapyrexia?. Pflugers Archiv European Journal of Physiology, 2002, 444, 810-815.	2.8	9
132	Discrete electrolytic lesion of the preoptic area prevents LPS-induced behavioral fever in toads. Journal of Experimental Biology, 2002, 205, 3513-3518.	1.7	28
133	Discrete electrolytic lesion of the preoptic area prevents LPS-induced behavioral fever in toads. Journal of Experimental Biology, 2002, 205, 3513-8.	1.7	19
134	Role of nitric oxide in insulin-induced hypothermia in rats. Brain Research Bulletin, 2001, 54, 49-53.	3.0	31
135	Hypoxic metabolic response of the golden-mantled ground squirrel. Journal of Applied Physiology, 2001, 91, 603-612.	2.5	86
136	Carbon monoxide is the heme oxygenase product with a pyretic action: evidence for a cGMP signaling pathway. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R448-R457.	1.8	44
137	Effect of nitric oxide in the nucleus isthmi on the hypoxic and hypercarbic drive to breathing of toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R338-R345.	1.8	11
138	Nitric oxide in the regulation of body temperature and fever. Journal of Thermal Biology, 2001, 26, 325-330.	2.5	45
139	Thermoregulatory response to hypoxia after inhibition of the central heme oxygenase–carbon monoxide pathway. Journal of Thermal Biology, 2001, 26, 339-343.	2.5	14
140	Seasonal changes in the preferred body temperature, cardiovascular, and respiratory responses to hypoxia in the toad, Bufo paracnemis. The Journal of Experimental Zoology, 2001, 289, 359-365.	1.4	38
141	Role of the haeme oxygenase/carbon monoxide pathway in mechanical nociceptor hypersensitivity. British Journal of Pharmacology, 2001, 132, 1673-1682.	5.4	54
142	Role of central adenosine in the respiratory and thermoregulatory responses to hypoxia. NeuroReport, 2000, 11, 193-197.	1.2	40
143	Role of nitric oxide in rat locus coeruleus in hypoxia-induced hyperventilation and hypothermia. NeuroReport, 2000, 11, 2991-2995.	1.2	24
144	Role of neuronal nitric oxide synthase in hypoxia-induced anapyrexia in rats. Journal of Applied Physiology, 2000, 89, 1131-1136.	2.5	22

#	Article	IF	CITATIONS
145	Central CO-heme oxygenase pathway raises body temperature by a prostaglandin-independent way. Journal of Applied Physiology, 2000, 88, 1607-1613.	2.5	43
146	Role of adenosine in the hypoxia-induced hypothermia of toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R196-R201.	1.8	12
147	Antipyretic effect of arginine vasotocin in toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R1408-R1414.	1.8	12
148	Inhibition of the central heme oxygenase-carbon monoxide pathway increases 2-deoxy-d-glucose-induced hypothermia in rats. Neuroscience Letters, 2000, 290, 45-48.	2.1	5
149	The nitric oxide pathway is an important modulator of stress-induced fever in rats. Physiology and Behavior, 2000, 70, 505-511.	2.1	34
150	Role of nucleus isthmi in the ventilatory response to hypoxia of Bufo paracnemis. Respiration Physiology, 2000, 119, 31-39.	2.7	17
151	The importance of glucose for the freezing tolerance/intolerance of the anuran amphibians Rana catesbeiana and Bufo paracnemis. Revista Brasileira De Biologia, 2000, 60, 321-328.	0.3	17
152	Carbon monoxide as a novel mediator of the febrile response in the central nervous system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R499-R507.	1.8	27
153	Role of nitric oxide in hypoxia-induced hyperventilation and hypothermia: participation of the locus coeruleus. Brazilian Journal of Medical and Biological Research, 1999, 32, 1389-1398.	1.5	30
154	Participation of nitric oxide in the nucleus isthmi in CO2-drive to breathing in toads. Brazilian Journal of Medical and Biological Research, 1999, 32, 1399-1405.	1.5	4
155	Endogenous vasopressin does not mediate hypoxia-induced anapyrexia in rats. Journal of Applied Physiology, 1999, 86, 469-473.	2.5	11
156	Role of nitric oxide in hypoxia inhibition of fever. Journal of Applied Physiology, 1999, 87, 2186-2190.	2.5	2
157	Central thermoregulatory effects of lactate in the toad Bufo paracnemis. Comparative Biochemistry and Physiology Part A, Molecular & Dr. Integrative Physiology, 1999, 122, 457-461.	1.8	23
158	Seasonal changes in the cardiorespiratory responses to hypercarbia and temperature in the bullfrog, Rana catesbeiana. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 124, 221-229.	1.8	32
159	Tolerance to lipopolysaccharide is related to the nitric oxide pathway. NeuroReport, 1999, 10, 3061-3065.	1.2	33
160	Role of nitric oxide in 2-deoxy-D-glucose-induced hypothermia in rats. NeuroReport, 1999, 10, 3101-3104.	1.2	14
161	Atrial natriuretic peptide and oxytocin induce natriuresis by release of cGMP. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 278-283.	7.1	95
162	Physiological significance of behavioral hypothermia in hypoglycemic frogs (Rana catesbeiana). Comparative Biochemistry and Physiology Part A, Molecular & Entry Integrative Physiology, 1998, 119, 957-961.	1.8	14

#	Article	IF	CITATIONS
163	Respiratory and metabolic responses of the spiny rats Proechimys yonenagae and P. iheringi to CO2. Respiration Physiology, 1998, 111, 223-231.	2.7	26
164	Role of nitric oxide in systemic vasopressin-induced hypothermia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R937-R941.	1.8	26
165	Effect of nitric oxide synthase inhibition on hypercapnia-induced hypothermia and hyperventilation. Journal of Applied Physiology, 1998, 85, 967-972.	2.5	33
166	Seasonal changes in the cardiovascular, respiratory and metabolic responses to temperature and hypoxia in the bullfrog Rana catesbeiana. Journal of Experimental Biology, 1998, 201, 761-8.	1.7	40
167	Participation of the nitric oxide pathway in cold-induced hypertension. Life Sciences, 1997, 60, 1875-1880.	4.3	14
168	Role of the nitric oxide pathway in hypoxia-induced hypothermia of rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R967-R971.	1.8	28
169	Effects of 2-deoxy-D-glucose and insulin on plasma glucose levels and behavioral thermoregulation of toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 272, R1-R5.	1.8	13
170	Cardiovascular, respiratory and metabolic responses to temperature and hypoxia of the winter frog Rana catesbeiana. Brazilian Journal of Medical and Biological Research, 1997, 30, 125-131.	1.5	10
171	Thermoregulatory effects of cyanide and azide in the toad, Bufo marinus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1996, 270, R169-R173.	1.8	12
172	Characterization of the atrial natriuretic factor system in lungs of the toad Bufo paracnemis Journal of Experimental Biology, 1996, 199, 1493-1499.	1.7	6
173	Ventilatory responses to carboxyhaemoglobinaemia and hypoxic hypoxia in Bufo paracnemis Journal of Experimental Biology, 1995, 198, 1417-1421.	1.7	19
174	Ventilatory responses to carboxyhaemoglobinaemia and hypoxic hypoxia in Bufo paracnemis. Journal of Experimental Biology, 1995, 198, 1417-21.	1.7	15
175	A new function for lactate in the toad Bufo marinus. Journal of Applied Physiology, 1994, 76, 2405-2410.	2.5	48
176	Role of central chemoreceptors in behavioral thermoregulation of the toad, Bufo marinus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1994, 266, R1483-R1487.	1.8	7
177	Ventilatory responses to hypoxia in the toad <i>Bufo paracnemis</i> before and after a decrease in haemoglobin oxygen-carrying capacity. Journal of Experimental Biology, 1994, 186, 1-8.	1.7	41
178	Ventilatory responses to hypoxia in the toad Bufo paracnemis before and after a decrease in haemoglobin oxygen-carrying capacity. Journal of Experimental Biology, 1994, 186, 1-8.	1.7	30
179	Temperature and central chemoreceptor drive to ventilation in toad (Bufo paracnemis). Respiration Physiology, 1993, 93, 337-346.	2.7	49
180	Interaction between temperature and hypoxia in the alligator. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1993, 265, R1339-R1343.	1.8	16

#	ARTICLE	IF	CITATIONS
181	Effect of Temperature on Central Chemical Control of Ventilation in the Alligator <i>Alligator Mississippiensis (i). Journal of Experimental Biology, 1993, 179, 261-272.</i>	1.7	33
182	Effect of temperature on central chemical control of ventilation in the alligator Alligator mississippiensis. Journal of Experimental Biology, 1993, 179, 261-72.	1.7	24
183	Autonomic basis for hypoxia-induced hyperglycaemia in toads (Bufo paracnemis). Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 102, 731-733.	0.6	4
184	Central chemoreceptor drive to breathing in unanesthetized toads, Bufo paracnemis. Respiration Physiology, 1992, 87, 195-204.	2.7	67
185	Toad bladder amiloride-sensitive channels reconstituted into planar lipid bilayers. Journal of Membrane Biology, 1992, 127, 121-8.	2.1	5
186	CORM-401, an orally active carbon monoxide-releasing molecule, increases body temperature by activating non-shivering thermogenesis in rats. Temperature, 0, , 1-8.	3.0	1
187	Chronic rapamycin treatment decreases hepatic <scp>IL</scp> â€6 protein but increases autophagy markers as a protective effect against the overtrainingâ€induced tissue damage. Clinical and Experimental Pharmacology and Physiology, 0, , .	1.9	0