Luke G Barrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/732028/publications.pdf

Version: 2024-02-01

50 papers

2,847 citations

186265
28
h-index

50 g-index

55 all docs 55 docs citations 55 times ranked $\begin{array}{c} 3370 \\ \text{citing authors} \end{array}$

#	Article	IF	Citations
1	Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evolutionary Applications, 2021, 14, 335-347.	3.1	18
2	Metapopulation Structure Predicts Population Dynamics in the Cakile maritima–Alternaria brassicicola Host-Pathogen Interaction. American Naturalist, 2021, 197, E55-E71.	2.1	2
3	Mixed infections alter transmission potential in a fungal plant pathogen. Environmental Microbiology, 2021, 23, 2315-2330.	3.8	25
4	Soil biotic effects and competition; What are the mechanisms behind being a successful invader?. Pedobiologia, 2021, 87-88, 150749.	1.2	3
5	Models of Plant Resistance Deployment. Annual Review of Phytopathology, 2021, 59, 125-152.	7.8	47
6	Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evolutionary Applications, 2021, 14, 2162-2178.	3.1	17
7	Maximizing World Food Production through Disease Control. BioScience, 2020, 70, 126-128.	4.9	13
8	Resistance to natural and synthetic gene drive systems. Journal of Evolutionary Biology, 2020, 33, 1345-1360.	1.7	43
9	Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini. PLoS Pathogens, 2020, 16, e1008731.	4.7	8
10	Availability of soil mutualists may not limit nonâ€native <i>Acacia</i> invasion but could increase their impact on native soil communities. Journal of Applied Ecology, 2020, 57, 786-793.	4.0	14
11	Can natural gene drives be part of future fungal pathogen control strategies in plants?. New Phytologist, 2020, 228, 1431-1439.	7.3	26
12	Gene technologies in weed management: a technical feasibility analysis. Current Opinion in Insect Science, 2020, 38, 6-14.	4.4	9
13	Phylogenetic signals and predictability in plant–soil feedbacks. New Phytologist, 2020, 228, 1440-1449.	7.3	19
14	Novel modelâ€based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient. Ecology Letters, 2019, 22, 2077-2086.	6.4	3
15	Gene drives in plants: opportunities and challenges for weed control and engineered resilience. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191515.	2.6	36
16	Larger plants promote a greater diversity of symbiotic nitrogenâ€fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 2019, 107, 977-991.	4.0	38
17	Spatioâ€temporal connectivity and host resistance influence evolutionary and epidemiological dynamics of the canola pathogen <i>Leptosphaeria maculans</i> . Evolutionary Applications, 2018, 11, 1354-1370.	3.1	31
18	Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance?. Evolutionary Applications, 2018, 11, 1791-1810.	3.1	52

#	Article	IF	CITATIONS
19	Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Computational Biology, 2018, 14, e1006067.	3.2	72
20	Symbiosis limits establishment of legumes outside their native range at a global scale. Nature Communications, 2017, 8, 14790.	12.8	71
21	Local demographic and epidemiological patterns in the <i><scp>L</scp>inum marginale</i> ?– <i><scp>M</scp>elampsora lini</i> association: a multiâ€year study. Journal of Ecology, 2017, 105, 1399-1412.	4.0	25
22	Host species and environmental variation can influence rhizobial community composition. Journal of Ecology, 2017, 105, 540-548.	4.0	38
23	Similar levels of gene content variation observed for Pseudomonas syringae populations extracted from single and multiple host species. PLoS ONE, 2017, 12, e0184195.	2.5	8
24	Differential plant invasiveness is not always driven by host promiscuity with bacterial symbionts. AoB PLANTS, 2016, 8, plw060.	2.3	15
25	Evolutionary history shapes patterns of mutualistic benefit in Acacia –rhizobial interactions. Evolution; International Journal of Organic Evolution, 2016, 70, 1473-1485.	2.3	18
26	Addressing the Challenges of Pathogen Evolution on the World's Arable Crops. Phytopathology, 2016, 106, 1117-1127.	2.2	55
27	Host promiscuity in symbiont associations can influence exotic legume establishment and colonization of novel ranges. Diversity and Distributions, 2015, 21, 1193-1203.	4.1	52
28	Specialization for resistance in wild host-pathogen interaction networks. Frontiers in Plant Science, 2015, 6, 761.	3.6	11
29	Partner diversity and identity impacts on plant productivity in ⟨i>Acacia⟨ i>â€"rhizobial interactions. Journal of Ecology, 2015, 103, 130-142.	4.0	49
30	Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models. Frontiers in Plant Science, 2015, 6, 1084.	3.6	62
31	Guiding deployment of resistance in cereals using evolutionary principles. Evolutionary Applications, 2014, 7, 609-624.	3.1	171
32	The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature, 2014, 512, 436-440.	27.8	182
33	Variation in infectivity and aggressiveness in space and time in wild host–pathogen systems: causes and consequences. Journal of Evolutionary Biology, 2012, 25, 1918-1936.	1.7	129
34	Unifying concepts and mechanisms in the specificity of plant–enemy interactions. Trends in Plant Science, 2012, 17, 282-292.	8.8	155
35	Mutualisms are not constraining crossâ€continental invasion success of <i><scp>A</scp>cacia</i> species within <scp>A</scp> ustralia. Diversity and Distributions, 2012, 18, 962-976.	4.1	42
36	Geographic adaptation in plant–soil mutualisms: tests using <i>Acacia</i> spp. and rhizobial bacteria. Functional Ecology, 2012, 26, 457-468.	3.6	45

#	Article	IF	CITATION
37	Rapid genetic change underpins antagonistic coevolution in a natural hostâ€pathogen metapopulation. Ecology Letters, 2012, 15, 425-435.	6.4	189
38	Population Processes at Multiple Spatial Scales Maintain Diversity and Adaptation in the Linum marginale - Melampsora lini Association. PLoS ONE, 2012, 7, e41366.	2.5	14
39	Cheating, trade-offs and the evolution of aggressiveness in a natural pathogen population. Ecology Letters, 2011, 14, 1149-1157.	6.4	58
40	MALADAPTATION IN WILD POPULATIONS OF THE GENERALIST PLANT PATHOGEN PSEUDOMONAS SYRINGAE. Evolution; International Journal of Organic Evolution, 2011, 65, 818-830.	2.3	70
41	Diversity and Evolution of Effector Loci in Natural Populations of the Plant Pathogen Melampsora lini. Molecular Biology and Evolution, 2009, 26, 2499-2513.	8.9	130
42	Positive selection in AvrP4 avirulence gene homologues across the genus Melampsora. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2913-2922.	2.6	33
43	Contrasting impacts of pollen and seed dispersal on spatial genetic structure in the bird-pollinated Banksia hookeriana. Heredity, 2009, 102, 274-285.	2.6	65
44	Continua of specificity and virulence in plant host–pathogen interactions: causes and consequences. New Phytologist, 2009, 183, 513-529.	7.3	176
45	Population structure and diversity in sexual and asexual populations of the pathogenic fungus <i>Melampsora lini</i> . Molecular Ecology, 2008, 17, 3401-3415.	3.9	36
46	Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends in Ecology and Evolution, 2008, 23, 678-685.	8.7	302
47	EVOLUTIONARY DIVERSIFICATION THROUGH HYBRIDIZATION IN A WILD HOST?PATHOGEN INTERACTION. Evolution; International Journal of Organic Evolution, 2007, 61, 1613-1621.	2.3	46
48	Isolation and characterization of microsatellite loci from the rust pathogen, Melampsora lini. Molecular Ecology Notes, 2006, 6, 930-932.	1.7	27
49	Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae). Molecular Ecology, 2005, 14, 4169-4179.	3.9	48
50	Variation in pathogen aggressiveness within a metapopulation of the Cakile maritima-Alternaria	2.4	37