List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7319919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-VEGF Effect of Bioactive Indolic Compounds and Hydroxytyrosol Metabolites. Foods, 2022, 11, 526.	4.3	6
2	SAlBi educa (Tailored Nutrition App for Improving Dietary Habits): Initial Evaluation of Usability. Frontiers in Nutrition, 2022, 9, 782430.	3.7	2
3	Short-Term Pilot Study to Evaluate the Impact of Salbi Educa Nutrition App in Macronutrients Intake and Adherence to the Mediterranean Diet: Randomized Controlled Trial. Nutrients, 2022, 14, 2061.	4.1	9
4	Hydroxytyrosol Decreases LPS- and α-Synuclein-Induced Microglial Activation In Vitro. Antioxidants, 2020, 9, 36.	5.1	28
5	Microglia-mediated neuroinflammation and Mediterranean diet. , 2020, , 347-356.		1
6	Occurrence of melatonin and indolic compounds derived from -tryptophan yeast metabolism in fermented wort and commercial beers. Food Chemistry, 2020, 331, 127192.	8.2	10
7	Anthocyanins in Blueberries Grown in Hot Climate Exert Strong Antioxidant Activity and May Be Effective against Urinary Tract Bacteria. Antioxidants, 2020, 9, 478.	5.1	26
8	Chemical hazards in grapes and wine, climate change and challenges to face. Food Chemistry, 2020, 314, 126222.	8.2	39
9	Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast strain, initial tyrosine concentration and initial must. LWT - Food Science and Technology, 2020, 130, 109631.	5.2	6
10	Anti-VEGF Signalling Mechanism in HUVECs by Melatonin, Serotonin, Hydroxytyrosol and Other Bioactive Compounds. Nutrients, 2019, 11, 2421.	4.1	11
11	Melatonin, protocatechuic acid and hydroxytyrosol effects on vitagenes system against alpha-synuclein toxicity. Food and Chemical Toxicology, 2019, 134, 110817.	3.6	32
12	<i>Saccharomyces cerevisiae</i> and <i>Torulaspora delbrueckii</i> Intra- and Extra-Cellular Aromatic Amino Acids Metabolism. Journal of Agricultural and Food Chemistry, 2019, 67, 7942-7953.	5.2	25
13	Efficiency of three intracellular extraction methods in the determination of metabolites related to tryptophan and tyrosine in winemaking yeast's metabolism by LC-HRMS. Food Chemistry, 2019, 297, 124924.	8.2	6
14	Inhibition of VEGFR-2 Phosphorylation and Effects on Downstream Signaling Pathways in Cultivated Human Endothelial Cells by Stilbenes from <i>Vitis</i> Spp. Journal of Agricultural and Food Chemistry, 2019, 67, 3909-3918.	5.2	16
15	Intracellular biosynthesis of melatonin and other indolic compounds in Saccharomyces and non-Saccharomyces wine yeasts. European Food Research and Technology, 2019, 245, 1553-1560.	3.3	17
16	Time course of <scp>l</scp> -tryptophan metabolites when fermenting natural grape musts: effect of inoculation treatments and cultivar on the occurrence of melatonin and related indolic compounds. Australian Journal of Grape and Wine Research, 2019, 25, 92-100.	2.1	16
17	Determination of hydroxytyrosol produced by winemaking yeasts during alcoholic fermentation using a validated UHPLC–HRMS method. Food Chemistry, 2018, 242, 345-351.	8.2	20
18	In Vitro Effects of Serotonin, Melatonin, and Other Related Indole Compounds on Amyloidâ€Ĥ² Kinetics and Neuroprotection. Molecular Nutrition and Food Research, 2018, 62, 1700383.	3.3	35

#	Article	IF	CITATIONS
19	Phenolic Compounds Characteristic of the Mediterranean Diet in Mitigating Microglia-Mediated Neuroinflammation. Frontiers in Cellular Neuroscience, 2018, 12, 373.	3.7	84
20	Protective effects of hydroxytyrosol against α-synuclein toxicity on PC12â€ [–] cells and fibril formation. Food and Chemical Toxicology, 2018, 120, 41-49.	3.6	26
21	Effect of Gluconic Acid Submerged Fermentation of Strawberry Purée on Amino Acids and Biogenic Amines Profile. Journal of Food Processing and Preservation, 2017, 41, e12787.	2.0	5
22	Influence of Fermentation Process on the Anthocyanin Composition of Wine and Vinegar Elaborated from Strawberry. Journal of Food Science, 2017, 82, 364-372.	3.1	36
23	Comparative assessment of software for non-targeted data analysis in the study of volatile fingerprint changes during storage of a strawberry beverage. Journal of Chromatography A, 2017, 1522, 70-77.	3.7	5
24	Evaluation of biogenic amines profile in opened wine bottles: Effect of storage conditions. Journal of Food Composition and Analysis, 2017, 63, 139-147.	3.9	20
25	Melatonin and derived I-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains. Food Chemistry, 2017, 217, 431-437.	8.2	56
26	Consumer acceptance of new strawberry vinegars by preference mapping. International Journal of Food Properties, 2017, 20, 2760-2771.	3.0	15
27	Inhibition of VEGF-Induced VEGFR-2 Activation and HUVEC Migration by Melatonin and Other Bioactive Indolic Compounds. Nutrients, 2017, 9, 249.	4.1	50
28	Vinegars and Other Fermented Condiments. , 2017, , 577-591.		9
29	Influence of storage conditions on the anthocyanin profile and colour of an innovative beverage elaborated by gluconic fermentation of strawberry. Journal of Functional Foods, 2016, 23, 198-209.	3.4	15
30	Volatile profile characterisation of Chilean sparkling wines produced by traditional and Charmat methods via sequential stir bar sorptive extraction. Food Chemistry, 2016, 207, 261-271.	8.2	37
31	Validation of an Analytical Method to Determine Melatonin and Compounds Related to l-Tryptophan Metabolism Using UHPLC/HRMS. Food Analytical Methods, 2016, 9, 3327-3336.	2.6	24
32	Protocatechuic Acid: Inhibition of Fibril Formation, Destabilization of Preformed Fibrils of Amyloid-β and α-Synuclein, and Neuroprotection. Journal of Agricultural and Food Chemistry, 2016, 64, 7722-7732.	5.2	65
33	Recent trends in the determination of biogenic amines in fermented beverages – A review. Analytica Chimica Acta, 2016, 939, 10-25.	5.4	123
34	Determination of Nonanthocyanin Phenolic Compounds Using High-Resolution Mass Spectrometry (UHPLC-Orbitrap-MS/MS) and Impact of Storage Conditions in a Beverage Made from Strawberry by Fermentation. Journal of Agricultural and Food Chemistry, 2016, 64, 1367-1376.	5.2	20
35	Recent developments in the analysis of musty odour compounds in water and wine: A review. Journal of Chromatography A, 2016, 1428, 72-85.	3.7	80
36	Quality control and determination of melatonin in food supplements. Journal of Food Composition and Analysis, 2016, 45, 80-86.	3.9	39

#	Article	IF	CITATIONS
37	A comparative study on aromatic profiles of strawberry vinegars obtained using different conditions in the production process. Food Chemistry, 2016, 192, 1051-1059.	8.2	35
38	Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile. Food Chemistry, 2015, 178, 221-228.	8.2	16
39	Composition of Nonanthocyanin Polyphenols in Alcoholic-Fermented Strawberry Products Using LC–MS (QTRAP), High-Resolution MS (UHPLC-Orbitrap-MS), LC-DAD, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2015, 63, 2041-2051.	5.2	54
40	Reported Foodborne Outbreaks Due to Fresh Produce in the United States and European Union: Trends and Causes. Foodborne Pathogens and Disease, 2015, 12, 32-38.	1.8	520
41	Changes on free amino acids during the alcoholic fermentation of strawberry and persimmon. International Journal of Food Science and Technology, 2015, 50, 48-54.	2.7	4
42	Melatonin and Other Tryptophan Metabolites Produced by Yeasts: Implications in Cardiovascular and Neurodegenerative Diseases. Frontiers in Microbiology, 2015, 6, 1565.	3.5	25
43	Acetic Acid Bacteria and the Production and Quality of Wine Vinegar. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	93
44	Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation. BioMed Research International, 2014, 2014, 1-7.	1.9	61
45	Impact Odorants in Strawberry Vinegars. , 2014, , 177-181.		Ο
46	Influence of the production process of strawberry industrial purees on free and glycosidically bound aroma compounds. Innovative Food Science and Emerging Technologies, 2014, 26, 381-388.	5.6	10
47	Non-anthocyanin phenolic compounds and antioxidant activity of beverages obtained by gluconic fermentation of strawberry. Innovative Food Science and Emerging Technologies, 2014, 26, 469-481.	5.6	15
48	Phenolic Composition of Vinegars over an Accelerated Aging Process Using Different Wood Species (Acacia, Cherry, Chestnut, and Oak): Effect of Wood Toasting. Journal of Agricultural and Food Chemistry, 2014, 62, 4369-4376.	5.2	16
49	Effects of the strawberry (Fragaria ananassa) purée elaboration process on non-anthocyanin phenolic composition and antioxidant activity. Food Chemistry, 2014, 164, 104-112.	8.2	35
50	Employment of different processes for the production of strawberry vinegars: Effects on antioxidant activity, total phenols and monomeric anthocyanins. LWT - Food Science and Technology, 2013, 52, 139-145.	5.2	54
51	Glycosidically Bound Aroma Compounds and Impact Odorants of Four Strawberry Varieties. Journal of Agricultural and Food Chemistry, 2012, 60, 6095-6102.	5.2	61
52	Validation of an analytical method for the determination of ethyl carbamate in vinegars. Talanta, 2012, 89, 178-182.	5.5	22
53	Characterization of odour active compounds in strawberry vinegars. Flavour and Fragrance Journal, 2012, 27, 313-321.	2.6	31
54	Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography–mass spectrometry method. Food Research International, 2011, 44, 259-268.	6.2	72

#	Article	IF	CITATIONS
55	Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. LWT - Food Science and Technology, 2011, 44, 1591-1596.	5.2	52
56	Phenolic Compounds as Markers for the Authentication of Sherry Vinegars: A Foresight for High Quality Vinegars Characterization. ACS Symposium Series, 2011, , 201-213.	0.5	3
57	Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chemistry, 2011, 126, 1608-1613.	8.2	110
58	Melatonin: A new bioactive compound in wine. Journal of Food Composition and Analysis, 2011, 24, 603-608.	3.9	99
59	Effect of wood on the phenolic profile and sensory properties of wine vinegars during ageing. Journal of Food Composition and Analysis, 2010, 23, 175-184.	3.9	42
60	Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry. Food Chemistry, 2010, 123, 574-582.	8.2	102
61	Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Analytica Chimica Acta, 2010, 660, 68-75.	5.4	99
62	Comprehensive analysis of chromatographic data by using PARAFAC2 and principal components analysis. Journal of Chromatography A, 2010, 1217, 4422-4429.	3.7	78
63	Changes of volatile compounds in wine vinegars during their elaboration in barrels made from different woods. Food Chemistry, 2010, 120, 561-571.	8.2	46
64	DESCRIPTIVE SENSORY ANALYSIS OF WINE VINEGAR: TASTING PROCEDURE AND RELIABILITY OF NEW ATTRIBUTES. Journal of Sensory Studies, 2010, 25, 216-230.	1.6	30
65	Anthocyanin composition in Cabernet Sauvignon red wine vinegar obtained by submerged acetification. Food Research International, 2010, 43, 1577-1584.	6.2	28
66	Determination of amino acids in grape-derived products: A review. Talanta, 2010, 81, 1143-1152.	5.5	96
67	Volatile compounds in red wine vinegars obtained by submerged and surface acetification in different woods. Food Chemistry, 2009, 113, 1252-1259.	8.2	59
68	Analysis of melatonin in foods. Journal of Food Composition and Analysis, 2009, 22, 177-183.	3.9	49
69	Improvement of Wine Vinegar Elaboration and Quality Analysis: Instrumental and Human Sensory Evaluation. Food Reviews International, 2009, 25, 142-156.	8.4	15
70	(+)-Dihydrorobinetin: a Marker of Vinegar Aging in Acacia (Robinia pseudoacacia) Wood. Journal of Agricultural and Food Chemistry, 2009, 57, 9551-9554.	5.2	22
71	Changes in Antioxidant Endogenous Enzymes (Activity and Gene Expression Levels) after Repeated Red Wine Intake. Journal of Agricultural and Food Chemistry, 2009, 57, 6578-6583.	5.2	54

#	Article	IF	CITATIONS
73	HPLC determination of amino acids with AQC derivatization in vinegars along submerged and surface acetifications and its relation to the microbiota. European Food Research and Technology, 2008, 227, 93-102.	3.3	38
74	Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. Journal of Food Composition and Analysis, 2008, 21, 282-290.	3.9	137
75	Optimization and validation of headspace sorptive extraction for the analysis of volatile compounds in wine vinegars. Journal of Chromatography A, 2008, 1204, 93-103.	3.7	57
76	The phenolic composition of red wine vinegar produced in barrels made from different woods. Food Chemistry, 2008, 109, 606-615.	8.2	74
77	Targeting Key Aromatic Substances on the Typical Aroma of Sherry Vinegar. Journal of Agricultural and Food Chemistry, 2008, 56, 6631-6639.	5.2	35
78	Defining the Typical Aroma of Sherry Vinegar: Sensory and Chemical Approach. Journal of Agricultural and Food Chemistry, 2008, 56, 8086-8095.	5.2	77
79	Antioxidant Activity of Phenolic Compounds: From <i>In Vitro</i> Results to <i>In Vivo</i> Evidence. Critical Reviews in Food Science and Nutrition, 2008, 48, 649-671.	10.3	288
80	Simulated Digestion and Antioxidant Activity of Red Wine Fractions Separated by High Speed Countercurrent Chromatography. Journal of Agricultural and Food Chemistry, 2008, 56, 8879-8884.	5.2	33
81	Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 2007, 71, 230-235.	5.5	671
82	Analysis for chloroanisoles and chlorophenols in cork by stir bar sorptive extraction and gas chromatography–mass spectrometry. Talanta, 2007, 71, 2092-2097.	5.5	39
83	Repeated Red Wine Consumption and Changes on Plasma Antioxidant Capacity and Endogenous Antioxidants (Uric Acid and Protein Thiol Groups). Journal of Agricultural and Food Chemistry, 2007, 55, 9713-9718.	5.2	20
84	Different radical scavenging tests in virgin olive oil and their relation to the total phenol content. Analytica Chimica Acta, 2007, 593, 103-107.	5.4	145
85	Acute Intake of Red Wine does not Affect Antioxidant Enzymes Activities in Human Subjects. International Journal for Vitamin and Nutrition Research, 2006, 76, 291-298.	1.5	2
86	Sensory Evaluation of Sherry Vinegar: Traditional Compared to Accelerated Aging With Oak Chips. Journal of Food Science, 2006, 71, S238-S242.	3.1	13
87	Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Analytica Chimica Acta, 2006, 563, 101-108.	5.4	93
88	Influence of enological practices on the antioxidant activity of wines. Food Chemistry, 2006, 95, 394-404.	8.2	106
89	Aplicación de diversos métodos quÃmicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology, 2005, 25, 726-732.	1.7	312
90	Industrial vinegar clarification by cross-flow microfiltration: effect on colour and polyphenol content. Journal of Food Engineering, 2005, 68, 133-136.	5.2	31

#	Article	IF	CITATIONS
91	Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Analytica Chimica Acta, 2005, 538, 391-398.	5.4	172
92	Antioxidant Capacity of Plasma after Red Wine Intake in Human Volunteers. Journal of Agricultural and Food Chemistry, 2005, 53, 5024-5029.	5.2	46
93	Accelerated aging of wine vinegars with oak chips: evaluation of wood flavour compounds. Food Chemistry, 2004, 88, 305-315.	8.2	72
94	Comparison of different sample preparation treatments for the analysis of wine phenolic compounds in human plasma by reversed phase high-performance liquid chromatography. Analytica Chimica Acta, 2004, 502, 49-55.	5.4	37
95	Evolution of wine vinegar composition during accelerated aging with oak chips. Analytica Chimica Acta, 2004, 513, 239-245.	5.4	55
96	Antioxidant activity of wines and relation with their polyphenolic composition. Analytica Chimica Acta, 2004, 513, 113-118.	5.4	217
97	The antioxidant activity of wines determined by the ABTS+ method: influence of sample dilution and time. Talanta, 2004, 64, 501-509.	5.5	99
98	Actividad antioxidante de pigmentos antociánicos. Food Science and Technology, 2004, 24, 691-693.	1.7	64
99	Characterization of Anthocyanins from the Fruits of Baguaçu (Eugenia umbellifloraBerg). Journal of Agricultural and Food Chemistry, 2003, 51, 5450-5454.	5.2	54
100	Evolution of Phenolic Compounds during an Experimental Aging in Wood of Sherry Vinegar. Journal of Agricultural and Food Chemistry, 2002, 50, 7053-7061.	5.2	56
101	Wine vinegar: technology, authenticity and quality evaluation. Trends in Food Science and Technology, 2002, 13, 12-21.	15.1	184
102	SENSORY EVALUATION OF SHERRY WINE VINEGAR. Journal of Sensory Studies, 2002, 17, 133-144.	1.6	33
103	Evolution of the Aroma Profile of Sherry Wine Vinegars during an Experimental Aging in Wood. Journal of Agricultural and Food Chemistry, 2002, 50, 3173-3178.	5.2	64
104	Multivariate analysis of commercial and laboratory produced Sherry wine vinegars: influence of acetification and aging. European Food Research and Technology, 2001, 212, 676-682.	3.3	48
105	Changes in phenolic composition of wines submitted to in vitro dissolution tests. Food Chemistry, 2001, 73, 11-16.	8.2	19
106	Sherry wine vinegar: physicochemical changes during the acetification process. Journal of the Science of Food and Agriculture, 2001, 81, 611-619.	3.5	37
107	Simltaneous determination of organic acids and sweeteners in soft drinks by ion-exclusion HPLC. Journal of Separation Science, 2001, 24, 879-884.	2.5	6
108	Set Up and Optimization of a Laboratory Scale Fermentor for the Production of Wine Vinegar. Journal of the Institute of Brewing, 2000, 106, 215-220.	2.3	17

#	Article	IF	CITATIONS
109	Sherry wine vinegars: phenolic composition changes during aging. Food Research International, 1999, 32, 433-440.	6.2	87
110	Ion-exclusion chromatographic determination of organic acids in vinegars. Journal of Chromatography A, 1998, 822, 45-51.	3.7	53
111	Measurement of Wine Vinegars' Color:Â Application of the Characteristic Vector Method. Journal of Agricultural and Food Chemistry, 1998, 46, 4238-4241.	5.2	6
112	Differentiation of Wine Vinegars Based on Phenolic Composition. Journal of Agricultural and Food Chemistry, 1997, 45, 3487-3492.	5.2	69
113	Spectrophotometric determination of total procyanidins in wine vinegars. Talanta, 1997, 44, 119-123.	5.5	20
114	Multivariate characterization of wine vinegars from the south of Spain according to their metallic content. Talanta, 1997, 45, 379-386.	5.5	62
115	Multivariate characterization of aging status in red wines based on chromatic parameters. Food Chemistry, 1997, 60, 103-108.	8.2	25
116	Characterisation and differentiation of wine vinegars by multivariate analysis. Journal of the Science of Food and Agriculture, 1994, 66, 209-212.	3.5	25
117	Separation and identification of phenolic acids in wine vinegars by HPLC. Food Chemistry, 1994, 50, 313-315.	8.2	27
118	Volatile components in Andalusian vinegars. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1987, 185, 130-133.	0.6	15
119	SAlBi educa: A promising, tailored nutrition app for promoting healthy eating habits (Preprint). JMIR	1.4	0