Ning Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7319751/publications.pdf

Version: 2024-02-01

	7096	12272
19,449	78	133
citations	h-index	g-index
255	255	10355
docs citations	times ranked	citing authors
	citations 255	19,449 78 citations h-index 255 255

#	Article	IF	CITATIONS
1	Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chemical Society Reviews, 2012, 41, 3381.	38.1	1,107
2	Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chemical Society Reviews, 2012, 41, 3464.	38.1	938
3	Recent Advances in Transition-Metal-Catalyzed Functionalization of Unstrained Carbon–Carbon Bonds. Chemical Reviews, 2014, 114, 8613-8661.	47.7	784
4	Dioxygen Activation under Ambient Conditions: Cu-Catalyzed Oxidative Amidationâ^'Diketonization of Terminal Alkynes Leading to \hat{l}_{\pm} -Ketoamides. Journal of the American Chemical Society, 2010, 132, 28-29.	13.7	414
5	Indoles from Simple Anilines and Alkynes: Palladiumâ€Catalyzed CH Activation Using Dioxygen as the Oxidant. Angewandte Chemie - International Edition, 2009, 48, 4572-4576.	13.8	378
6	<i>N</i> , <i>N</i> ,êÐimethylformamide: A Multipurpose Building Block. Angewandte Chemie - International Edition, 2012, 51, 9226-9237.	13.8	370
7	Oxygenation via C–H/C–C Bond Activation with Molecular Oxygen. Accounts of Chemical Research, 2017, 50, 1640-1653.	15.6	366
8	Copperâ€Catalyzed Aerobic Oxidative Dehydrogenative Coupling of Anilines Leading to Aromatic Azo Compounds using Dioxygen as an Oxidant. Angewandte Chemie - International Edition, 2010, 49, 6174-6177.	13.8	335
9	Direct Transformation of <i>N</i> , <i>N</i> -Dimethylformamide to â^'CN: Pd-Catalyzed Cyanation of Heteroarenes via Câ€"H Functionalization. Journal of the American Chemical Society, 2011, 133, 12374-12377.	13.7	284
10	Ag-catalyzed C–H/C–C bond functionalization. Chemical Society Reviews, 2016, 45, 4590-4627.	38.1	284
11	Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to $\hat{1}^2$ -Azido Alcohols. Journal of the American Chemical Society, 2015, 137, 6059-6066.	13.7	269
12	Electrochemical Oxidation Induced Selective C–C Bond Cleavage. Chemical Reviews, 2021, 121, 485-505.	47.7	251
13	A Palladium atalyzed Oxidative Cycloaromatization of Biaryls with Alkynes Using Molecular Oxygen as the Oxidant. Angewandte Chemie - International Edition, 2009, 48, 7895-7898.	13.8	245
14	Copper-Catalyzed C–H Azidation of Anilines under Mild Conditions. Journal of the American Chemical Society, 2012, 134, 18924-18927.	13.7	245
15	Direct Approaches to Nitriles via Highly Efficient Nitrogenation Strategy through C–H or C–C Bond Cleavage. Accounts of Chemical Research, 2014, 47, 1137-1145.	15.6	242
16	Cu-Catalyzed Oxidative Amidation of Propiolic Acids Under Air via Decarboxylative Coupling. Organic Letters, 2010, 12, 2000-2003.	4.6	231
17	Cu-Catalyzed Esterification Reaction via Aerobic Oxygenation and C–C Bond Cleavage: An Approach to α-Ketoesters. Journal of the American Chemical Society, 2013, 135, 15257-15262.	13.7	231
18	Copperâ€Catalyzed Aerobic Oxidative Coupling of Aryl Acetaldehydes with Anilines Leading to αâ€Ketoamides. Angewandte Chemie - International Edition, 2011, 50, 11088-11092.	13.8	228

#	Article	IF	CITATIONS
19	Direct Transformation of Methyl Arenes to Aryl Nitriles at Room Temperature. Angewandte Chemie - International Edition, 2009, 48, 7094-7097.	13.8	227
20	TEMPO-catalyzed Aerobic Oxygenation and Nitrogenation of Olefins via Câ•C Double-Bond Cleavage. Journal of the American Chemical Society, 2013, 135, 11692-11695.	13.7	213
21	Utilization of Natural Sunlight and Air in the Aerobic Oxidation of Benzyl Halides. Organic Letters, 2011, 13, 2168-2171.	4.6	211
22	Efficient and Practical Oxidative Bromination and Iodination of Arenes and Heteroarenes with DMSO and Hydrogen Halide: A Mild Protocol for Late-Stage Functionalization. Organic Letters, 2015, 17, 2886-2889.	4.6	206
23	From Ketones to Esters by a Cu-Catalyzed Highly Selective C(CO)–C(alkyl) Bond Cleavage: Aerobic Oxidation and Oxygenation with Air. Journal of the American Chemical Society, 2014, 136, 14858-14865.	13.7	202
24	PdCl ₂ and <i>N</i> àêHydroxyphthalimide Coâ€catalyzed CH Hydroxylation by Dioxygen Activation. Angewandte Chemie - International Edition, 2013, 52, 5827-5831.	13.8	201
25	Metal-Free, NHPI Catalyzed Oxidative Cleavage of C–C Double Bond Using Molecular Oxygen as Oxidant. Organic Letters, 2012, 14, 4158-4161.	4.6	196
26	Aerobic Oxidation of Pd ^{II} to Pd ^{IV} by Active Radical Reactants: Direct C–H Nitration and Acylation of Arenes via Oxygenation Process with Molecular Oxygen. ACS Catalysis, 2015, 5, 1956-1963.	11.2	194
27	Cationic Cobalt(III) Catalyzed Indole Synthesis: The Regioselective Intermolecular Cyclization of Nâ€Nitrosoanilines and Alkynes. Angewandte Chemie - International Edition, 2016, 55, 4035-4039.	13.8	190
28	Highly Efficient CH Hydroxylation of Carbonyl Compounds with Oxygen under Mild Conditions. Angewandte Chemie - International Edition, 2014, 53, 548-552.	13.8	189
29	Iron-Facilitated Direct Oxidative Câ^'H Transformation of Allylarenes or Alkenes to Alkenyl Nitriles. Journal of the American Chemical Society, 2010, 132, 15893-15895.	13.7	184
30	Catalystâ€Controlled Highly Selective Coupling and Oxygenation of Olefins: A Direct Approach to Alcohols, Ketones, and Diketones. Angewandte Chemie - International Edition, 2013, 52, 9808-9812.	13.8	182
31	Cationic Cobalt(III)â€Catalyzed Aryl and Alkenyl CH Amidation: A Mild Protocol for the Modification of Purine Derivatives. Chemistry - A European Journal, 2015, 21, 16395-16399.	3.3	176
32	Copperâ€Catalyzed Aerobic Oxidative CC Bond Cleavage for CN Bond Formation: From Ketones to Amides. Angewandte Chemie - International Edition, 2014, 53, 6528-6532.	13.8	172
33	Silverâ€Catalyzed Nitrogenation of Alkynes: A Direct Approach to Nitriles through CC Bond Cleavage. Angewandte Chemie - International Edition, 2013, 52, 6677-6680.	13.8	167
34	Metal-free nitro-carbocyclization of activated alkenes: a direct approach to synthesize oxindoles by cascade C–N and C–C bond formation. Chemical Communications, 2014, 50, 554-556.	4.1	165
35	Copper-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Coupling of Amine and α-Carbonyl Aldehyde: A Practical and Efficient Approach to α-Ketoamides with Wide Substrate Scope. Organic Letters, 2012, 14, 3280-3283.	4.6	163
36	Ru(ii)-catalyzed intermolecular C–H amidation of weakly coordinating ketones. Chemical Communications, 2013, 49, 5654.	4.1	146

#	Article	IF	CITATIONS
37	Iron-catalyzed aerobic difunctionalization of alkenes: a highly efficient approach to construct oxindoles by $C\hat{a}\in S$ and $C\hat{a}\in S$ bond formation. Chemical Communications, 2014, 50, 4115.	4.1	146
38	Cs ₂ CO ₃ â€Catalyzed Aerobic Oxidative Crossâ€Dehydrogenative Coupling of Thiols with Phosphonates and Arenes. Angewandte Chemie - International Edition, 2017, 56, 2487-2491.	13.8	145
39	Conversion of Simple Cyclohexanones into Catechols. Journal of the American Chemical Society, 2016, 138, 12271-12277.	13.7	141
40	Rh-Catalyzed Construction of Quinolin-2(1 <i>H</i>)-ones via Câ€"H Bond Activation of Simple Anilines with CO and Alkynes. Journal of the American Chemical Society, 2015, 137, 9246-9249.	13.7	138
41	Synthesis of \hat{l}^2 - and \hat{l}^3 -Carbolinones via Pd-Catalyzed Direct Dehydrogenative Annulation (DDA) of Indole-carboxamides with Alkynes Using Air as the Oxidant. Organic Letters, 2010, 12, 2908-2911.	4.6	133
42	I ₂ - or NBS-Catalyzed Highly Efficient \hat{l} ±-Hydroxylation of Ketones with Dimethyl Sulfoxide. Organic Letters, 2015, 17, 876-879.	4.6	133
43	Copper-Catalyzed Oxoazidation and Alkoxyazidation of Indoles. Organic Letters, 2014, 16, 2302-2305.	4.6	132
44	Synergistic Gold and Iron Dual Catalysis: Preferred Radical Addition toward Vinyl–Gold Intermediate over Alkene. Journal of the American Chemical Society, 2015, 137, 8912-8915.	13.7	130
45	An Efficient Transformation from Benzyl or Allyl Halides to Aryl and Alkenyl Nitriles. Organic Letters, 2010, 12, 2888-2891.	4.6	125
46	Iron atalyzed CH and CC Bond Cleavage: A Direct Approach to Amides from Simple Hydrocarbons. Angewandte Chemie - International Edition, 2011, 50, 12595-12599.	13.8	124
47	Pd(II)-Catalyzed Synthesis of Carbolines by Iminoannulation of Internal Alkynes via Direct Câ ⁻ 'H Bond Cleavage Using Dioxygen as Oxidant. Organic Letters, 2010, 12, 1540-1543.	4.6	123
48	Molecular oxygen-mediated oxygenation reactions involving radicals. Chemical Society Reviews, 2021, 50, 8067-8101.	38.1	123
49	DMSO-catalysed late-stage chlorination of (hetero)arenes. Nature Catalysis, 2020, 3, 107-115.	34.4	122
50	Organocatalytic Asymmetric Intermolecular Dehydrogenative \hat{l}_{\pm} -Alkylation of Aldehydes Using Molecular Oxygen as Oxidant. Organic Letters, 2011, 13, 5212-5215.	4.6	121
51	Homogeneous Oxygenase Catalysis. Chemical Reviews, 2018, 118, 4912-4945.	47.7	119
52	Synthesis of Oxazoles through Copperâ€Mediated Aerobic Oxidative Dehydrogenative Annulation and Oxygenation of Aldehydes and Amines. Angewandte Chemie - International Edition, 2012, 51, 11367-11370.	13.8	116
53	Transition-metal-catalyzed ketone-directed ortho-C–H functionalization reactions. Tetrahedron Letters, 2014, 55, 1121-1126.	1.4	114
54	2,4- vs 3,4-Disubsituted Pyrrole Synthesis Switched by Copper and Nickel Catalysts. Organic Letters, 2012, 14, 4926-4929.	4.6	111

#	Article	IF	CITATIONS
55	<i>N</i> â€Heterocyclic Carbeneâ€Catalyzed Homoenolate Additions with <i>N</i> â€Aryl Ketimines as Electrophiles: Efficient Synthesis of Spirocyclic γâ€Lactam Oxindoles. Chemistry - A European Journal, 2012, 18, 9198-9203.	3.3	111
56	Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2â€Dichloroethane. Angewandte Chemie - International Edition, 2019, 58, 4566-4570.	13.8	108
57	Silver-Catalyzed Decarboxylative Azidation of Aliphatic Carboxylic Acids. Organic Letters, 2015, 17, 4702-4705.	4.6	103
58	Azidation in the Difunctionalization of Olefins. Molecules, 2016, 21, 352.	3.8	102
59	From alkylarenes to anilines via site-directed carbon–carbon amination. Nature Chemistry, 2019, 11, 71-77.	13.6	102
60	Mn-promoted Aerobic Oxidative C–C Bond Cleavage of Aldehydes with Dioxygen Activation: A Simple Synthetic Approach to Formamides. Organic Letters, 2012, 14, 2362-2365.	4.6	100
61	Copper-catalyzed decarboxylative cross-coupling of propiolic acids and terminal alkynes. Tetrahedron Letters, 2010, 51, 1287-1290.	1.4	97
62	Dehydrogenative Nâ€Incorporation: A Direct Approach to Quinoxaline <i>N</i> â€Oxides under Mild Conditions. Angewandte Chemie - International Edition, 2014, 53, 10495-10499.	13.8	96
63	Control of Chemo-, Regio-, and Stereoselectivities in Ligand-Free Pd-Catalyzed Oxidative Heck Reactions of Arylboronic Acids or Alkenylboronate with Allyl Esters. Organic Letters, 2009, 11, 2980-2983.	4.6	95
64	Silver-catalyzed remote Csp3-H functionalization of aliphatic alcohols. Nature Communications, 2018, 9, 2625.	12.8	95
65	Selective CC _{sp} Bond Cleavage: The Nitrogenation of Alkynes to Amides. Angewandte Chemie - International Edition, 2013, 52, 7850-7854.	13.8	93
66	Ligand-Promoted Pd-Catalyzed Oxime Ether Directed C–H Hydroxylation of Arenes. ACS Catalysis, 2015, 5, 6148-6152.	11.2	92
67	Implanting Nitrogen into Hydrocarbon Molecules through CH and CC Bond Cleavages: A Direct Approach to Tetrazoles. Angewandte Chemie - International Edition, 2011, 50, 11487-11491.	13.8	91
68	Feâ€Catalyzed Amination of (Hetero)Arenes with a Redoxâ€Active Aminating Reagent under Mild Conditions. Chemistry - A European Journal, 2017, 23, 563-567.	3.3	91
69	Ligandâ€Free Pdâ€Catalyzed Highly Selective Arylation of Allylic Esters with Retention of the Traditional Leaving Group. Angewandte Chemie - International Edition, 2008, 47, 4729-4732.	13.8	88
70	Copper-catalyzed direct oxidative annulation of N-iminopyridinium ylides with terminal alkynes using O ₂ as oxidant. Chemical Communications, 2013, 49, 4250-4252.	4.1	87
71	Rh- and Cu-Cocatalyzed Aerobic Oxidative Approach to Quinazolines via [4 + 2] C–H Annulation with Alkyl Azides. Organic Letters, 2016, 18, 2150-2153.	4.6	83
72	Direct Tryptophols Synthesis from 2-Vinylanilines and Alkynes via C≡C Triple Bond Cleavage and Dioxygen Activation. Journal of the American Chemical Society, 2016, 138, 13147-13150.	13.7	83

#	Article	IF	CITATIONS
73	Azidofluoroalkylation of Alkenes with Simple Fluoroalkyl Iodides Enabled by Photoredox Catalysis. Organic Letters, 2017, 19, 4738-4741.	4.6	83
74	Agâ€Promoted Azidoâ€Carbocyclization of Activated Alkenes via CH Bond Cleavage. Chemistry - an Asian Journal, 2013, 8, 2932-2935.	3.3	81
75	Rhâ€Catalyzed Direct Amination of Unactivated C(sp ³)â^'H bond with Anthranils Under Mild Conditions. Chemistry - A European Journal, 2016, 22, 11165-11169.	3.3	81
76	Nitromethane as a nitrogen donor in Schmidt-type formation of amides and nitriles. Science, 2020, 367, 281-285.	12.6	81
77	Palladium atalyzed Ringâ€Expansion Reaction of Indoles with Alkynes: From Indoles to Tetrahydroquinoline Derivatives Under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2010, 49, 4036-4041.	13.8	79
78	PdCl2 catalyzed efficient assembly of organic azides, CO, and alcohols under mild conditions: a direct approach to synthesize carbamates. Chemical Communications, 2014, 50, 3706.	4.1	79
79	Copper-Catalyzed Aerobic Oxidative C–C Bond Cleavage of Unstrained Ketones with Air and Amines. Organic Letters, 2015, 17, 2542-2545.	4.6	79
80	Cu-Catalyzed Transformation of Alkynes and Alkenes with Azide and Dimethyl Sulfoxide Reagents. Organic Letters, 2015, 17, 6186-6189.	4.6	78
81	An Efficient Difluorohydroxylation of Indoles Using Selectfluor as a Fluorinating Reagent. Organic Letters, 2011, 13, 4498-4501.	4.6	76
82	Pd-catalyzed dehydrogenative annulation approach for the efficient synthesis of phenanthridinones. Chemical Science, 2016, 7, 5384-5389.	7.4	76
83	Chemoselective Synthesis of Naphthylamides and Isoquinolinones <i>via</i> Rhodium atalyzed Oxidative Dehydrogenative Annulation of Benzamides with Alkynes. Advanced Synthesis and Catalysis, 2012, 354, 2695-2700.	4.3	71
84	Cu-Catalyzed Aerobic Oxidative Sulfuration/Annulation Approach to Thiazoles via Multiple Csp ³ â€"H Bond Cleavage. Organic Letters, 2018, 20, 2632-2636.	4.6	71
85	Splitting a Substrate into Three Parts: Goldâ€Catalyzed Nitrogenation of Alkynes by CC and CC Bond Cleavage. Angewandte Chemie - International Edition, 2016, 55, 350-354.	13.8	70
86	Electrochemically Oxidative C–C Bond Cleavage of Alkylarenes for Anilines Synthesis. ACS Catalysis, 2019, 9, 2063-2067.	11.2	69
87	FeCl ₂ â€Promoted Cleavage of the Unactivated CC Bond of Alkylarenes and Polystyrene: Direct Synthesis of Arylamines. Angewandte Chemie - International Edition, 2012, 51, 6971-6975.	13.8	68
88	Cu- or Fe-catalyzed C–H/C–C bond nitrogenation reactions for the direct synthesis of N-containing compounds. Organic Chemistry Frontiers, 2015, 2, 403-415.	4.5	68
89	Cu-Catalyzed Concise Synthesis of Pyridines and 2-(1 <i>H</i>)-Pyridones from Acetaldehydes and Simple Nitrogen Donors. Organic Letters, 2015, 17, 584-587.	4.6	67
90	Pd-Catalyzed Tandem Câ€"H Azidation and Nâ€"N Bond Formation of Arylpyridines: A Direct Approach to Pyrido[1,2- <i>b</i>]indazoles. Organic Letters, 2013, 15, 4262-4265.	4.6	66

#	Article	IF	Citations
91	Efficient and practical synthesis of unsymmetrical disulfides <i>via</i> base-catalyzed aerobic oxidative dehydrogenative coupling of thiols. Organic Chemistry Frontiers, 2019, 6, 2220-2225.	4.5	66
92	Electrochemically induced nickel catalysis for oxygenation reactions with water. Nature Catalysis, 2021, 4, 116-123.	34.4	65
93	A highly efficient metal-free approach to meta- and multiple-substituted phenols via a simple oxidation of cyclohexenones. Green Chemistry, 2016, 18, 6462-6467.	9.0	64
94	Recyclable copper catalyzed nitrogenation of biphenyl halides: a direct approach to carbazoles. Chemical Communications, 2013, 49, 3473.	4.1	63
95	Sp–sp3 C–C bond formation via Fe(OTf)3/TfOH cocatalyzed coupling reaction of terminal alkynes with benzylic alcohols. Chemical Communications, 2009, , 6487.	4.1	60
96	Metal-Free Nitrogenation of 2-Acetylbiphenyls: Expeditious Synthesis of Phenanthridines. Organic Letters, 2015, 17, 2206-2209.	4.6	58
97	Cationic Cobalt(III) Catalyzed Indole Synthesis: The Regioselective Intermolecular Cyclization of Nâ€Nitrosoanilines and Alkynes. Angewandte Chemie, 2016, 128, 4103-4107.	2.0	58
98	NHC-catalyzed Câ \in "O or Câ \in "N bond formation: efficient approaches to \hat{l}_{\pm} , \hat{l}_{-}^{2} -unsaturated esters and amides. Chemical Communications, 2012, 48, 7280.	4.1	57
99	Morpholine catalyzed direct C3 alkenylation of indoles with $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes. Chemical Communications, 2011, 47, 8097.	4.1	55
100	Photoinduced Câ€"C Bond Cleavage and Oxidation of Cycloketoxime Esters. Chinese Journal of Chemistry, 2018, 36, 995-999.	4.9	55
101	Et3N-catalyzed oxidative dehydrogenative coupling of \hat{I}_{\pm} -unsubstituted aldehydes and ketones with aryl diamines leading to quinoxalines using molecular oxygen as oxidant. Tetrahedron, 2012, 68, 5258-5262.	1.9	53
102	Ironâ€Facilitated Oxidative Dehydrogenative CO Bond Formation by Propargylic CH Functionalization. Angewandte Chemie - International Edition, 2012, 51, 10823-10826.	13.8	52
103	Silver-Catalyzed Radical Transformation of Aliphatic Carboxylic Acids to Oxime Ethers. ACS Catalysis, 2016, 6, 6465-6472.	11.2	51
104	NHPI and palladium cocatalyzed aerobic oxidative acylation of arenes through a radical process. Chemical Communications, 2016, 52, 1416-1419.	4.1	50
105	Cu-mediated C–H cyanation of arenes using N,N-dimethylformamide (DMF) as the "CN―source. Organic Chemistry Frontiers, 2014, 1, 1176-1179.	4.5	47
106	Copper-Catalyzed Oxygenation Approach to Oxazoles from Amines, Alkynes, and Molecular Oxygen. Organic Letters, 2018, 20, 2762-2765.	4.6	47
107	A Cu-catalyzed practical approach to \hat{l} ±-ketoesters under air: an efficient aerobic oxidative dehydrogenative coupling of alcohols and \hat{l} ±-carbonyl aldehydes. Organic Chemistry Frontiers, 2014, 1, 109.	4.5	46
108	Rhâ€catalyzed Transient Directing Group Promoted C—H Amidation of Benzaldehydes Utilizing Dioxazolones. Chinese Journal of Chemistry, 2018, 36, 213-216.	4.9	46

#	Article	IF	CITATIONS
109	Cleaving arene rings for acyclic alkenylnitrile synthesis. Nature, 2021, 597, 64-69.	27.8	46
110	Ceric Ammonium Nitrate (CAN) Catalyzed Modification of Ketones ⟨i⟩via⟨ i⟩ Two C–C Bond Cleavages with the Retention of the Oxo-Group. Organic Letters, 2014, 16, 3388-3391.	4.6	45
111	Dioxygen-Promoted Pd-Catalyzed Aminocarbonylation of Organoboronic Acids with Amines and CO: A Direct Approach to Tertiary Amides. Organic Letters, 2016, 18, 5852-5855.	4.6	43
112	Rhâ€Catalyzed Diarylamine Synthesis by Intermolecular C–H Amination of Heteroarylarenes. European Journal of Organic Chemistry, 2013, 2013, 7480-7483.	2.4	41
113	Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nature Communications, 2021, 12, 3873.	12.8	41
114	Catalytic Electrophilic Halogenation of Arenes with Electron-Withdrawing Substituents. Journal of the American Chemical Society, 2022, 144, 13415-13425.	13.7	40
115	Pd ^{II} â€Catalyzed Highly Selective Arylation of Allyl Esters via CH Functionalization of Unreactive Arenes with Retention of the Traditional Leaving Group. Chemistry - an Asian Journal, 2010, 5, 1090-1093.	3.3	39
116	Multiple Oxidative Dehydrogenative Functionalization of Arylacetaldehydes Using Molecular Oxygen as Oxidant Leading to 2â€0xoâ€acetamidines. Advanced Synthesis and Catalysis, 2012, 354, 1293-1300.	4.3	38
117	Multistage Screening Reveals 3-Substituted Indolin-2-one Derivatives as Novel and Isoform-Selective c-Jun N-terminal Kinase 3 (JNK3) Inhibitors: Implications to Drug Discovery for Potential Treatment of Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2019, 62, 6645-6664.	6.4	38
118	Selective αâ€Oxyamination and Hydroxylation of Aliphatic Amides. Angewandte Chemie - International Edition, 2017, 56, 12307-12311.	13.8	37
119	The tandem reaction combining radical and ionic processes: an efficient approach to substituted 3,4-dihydroquinolin-2-ones. Tetrahedron, 2009, 65, 1982-1987.	1.9	36
120	TEMP and copper cocatalyzed oxygenation of ketones with molecular oxygen: chemoselective synthesis of l±-ketoesters. Organic Chemistry Frontiers, 2015, 2, 354-359.	4.5	36
121	Copper/Ironâ€Cocatalyzed Highly Selective Tandem Reactions: Efficient Approaches to <i>Zâ€</i> γâ€Alkylidene Lactones. Advanced Synthesis and Catalysis, 2009, 351, 569-575.	4.3	35
122	Fe-catalyzed highly selective ring expansion of alkynylcyclopropyl alkanols to cyclobutanols. Chemical Communications, 2009, , 6842.	4.1	35
123	NBS mediated nitriles synthesis through C double bond cleavage. Organic and Biomolecular Chemistry, 2014, 12, 1198.	2.8	34
124	Direct Transformation of Methyl Imines to αâ€lminonitriles under Mild and Transitionâ€Metalâ€Free Conditions. Chemistry - A European Journal, 2013, 19, 11199-11202.	3.3	33
125	DMSOâ€Enabled Selective Radical Oâ^'H Activation of 1,3(4)â€Diols. Angewandte Chemie - International Edition, 2020, 59, 19851-19856.	13.8	33
126	Cu-catalyzed decarboxylative coupling of propiolic acids with boronic acids. Tetrahedron Letters, 2013, 54, 1951-1955.	1.4	32

#	Article	IF	Citations
127	BrÃ, nsted acid mediated nitrogenation of propargylic alcohols: an efficient approach to alkenyl nitriles. Organic and Biomolecular Chemistry, 2014, 12, 4324.	2.8	32
128	Cs ₂ CO ₃ â€Catalyzed Aerobic Oxidative Crossâ€Dehydrogenative Coupling of Thiols with Phosphonates and Arenes. Angewandte Chemie, 2017, 129, 2527-2531.	2.0	32
129	Rh-catalyzed aerobic oxidative cyclization of anilines, alkynes, and CO. Chemical Science, 2017, 8, 6266-6273.	7.4	32
130	The direct C–H halogenations of indoles. Tetrahedron Letters, 2014, 55, 2243-2245.	1.4	30
131	Copper-catalyzed direct transformation of simple alkynes to alkenyl nitriles via aerobic oxidative N-incorporation. Chemical Science, 2015, 6, 6355-6360.	7.4	29
132	Iron-mediated cross dehydrogenative coupling (CDC) of terminal alkynes with benzylic ethers and alkanes. Science China Chemistry, 2012, 55, 50-54.	8.2	27
133	Reoxidation of Transitionâ€metal Catalysts with O ₂ . Chinese Journal of Chemistry, 2017, 35, 1349-1365.	4.9	27
134	Cu-catalyzed oxygenation of alkene-tethered amides with O ₂ <i>via</i> bond cleavage: a direct approach to cyclic imides. Chemical Science, 2019, 10, 9099-9103.	7.4	26
135	Chemoselective Nitrosylation of Anilines and Alkynes via Fragmentary or Complete NO Incorporation. CheM, 2018, 4, 1427-1442.	11.7	25
136	A metal-free desulfurizing radical reductive C–C coupling of thiols and alkenes. Chemical Communications, 2019, 55, 10583-10586.	4.1	25
137	Pd/Cuâ€Cocatalyzed Aerobic Oxidative Carbonylative Homocoupling of Arylboronic Acids and CO: A Highly Selective Approach to Diaryl Ketones. Chemistry - an Asian Journal, 2014, 9, 2411-2414.	3.3	24
138	Selective Aerobic Oxygenation of Tertiary Allylic Alcohols with Molecular Oxygen. Angewandte Chemie - International Edition, 2019, 58, 11028-11032.	13.8	23
139	Oxygenation of Simple Olefins through Selective Allylic Câ^'C Bond Cleavage: A Direct Approach to Cinnamyl Aldehydes. Angewandte Chemie - International Edition, 2017, 56, 11940-11944.	13.8	22
140	Iron-facilitated direct oxidative Câ€"H transformation of allyl arenes to alkenyl aldehydes. Tetrahedron Letters, 2011, 52, 3208-3211.	1.4	21
141	Acetonitrile Activation: An Effective Two arbon Unit for Cyclization. Angewandte Chemie - International Edition, 2019, 58, 4376-4380.	13.8	21
142	Nâ∈Heterocyclic Carbene Catalyzed Ester Synthesis from Organic Halides through Incorporation of Oxygen Atoms from Air. Angewandte Chemie - International Edition, 2021, 60, 2140-2144.	13.8	21
143	Phosphaneâ€Free Copperâ€Catalyzed Decarboxylative Coupling of Alkynyl Carboxylic Acids with Aryl Halides under Aerobic Conditions. European Journal of Organic Chemistry, 2011, 2011, 4751-4755.	2.4	20
144	Pd(II)-catalyzed aerobic oxidative intramolecular hydroamination and Câ€"H functionalization of N-alkynyl anilines for the synthesis of indole derivatives. Tetrahedron, 2013, 69, 4408-4414.	1.9	20

#	Article	IF	CITATIONS
145	Direct Synthesis of Structurally Divergent Indole Alkaloids from Simple Chemicals. Chinese Journal of Chemistry, 2018, 36, 815-818.	4.9	20
146	CAN-Catalyzed Rapid C–O Bond Formation towards α-Aminoxylation of Ketones. Synlett, 2014, 25, 2717-2720.	1.8	19
147	Copper-Catalyzed Aerobic Oxidative C–C Bond Cleavage of 1,3-DiarylÂdiketones To Synthesize 1,2-Diketones. Synlett, 2014, 25, 1458-1460.	1.8	19
148	AgNO3 catalyzed cyclization of propargyl-Meldrum's acids in aqueous solvent: highly selective synthesis of Z-γ-alkylidene lactones. Tetrahedron Letters, 2009, 50, 5406-5408.	1.4	18
149	Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2â€Dichloroethane. Angewandte Chemie, 2019, 131, 4614-4618.	2.0	17
150	Rational modification, synthesis and biological evaluation of 3,4-dihydroquinoxalin-2(1H)-one derivatives as potent and selective c-Jun N-terminal kinase 3 (JNK3) inhibitors. European Journal of Medicinal Chemistry, 2020, 201, 112445.	5.5	17
151	Nitromethane-Enabled Fluorination of Styrenes and Arenes. CCS Chemistry, 2020, 2, 566-575.	7.8	17
152	Radical 1,4/5â€Amino Shift Enables Access to Fluoroalkylâ€Containing Primary β(γ)â€Aminoketones under Metalâ€Free Conditions. Angewandte Chemie - International Edition, 2021, 60, 26308-26313.	13.8	16
153	Copperâ€Catalyzed Oxidative Transformation of Aryl Propargylic Azides to Aryl Propiolonitriles. Advanced Synthesis and Catalysis, 2013, 355, 1207-1210.	4.3	14
154	Efficient <scp>Pd atalyzed</scp> Câ€"H Oxidative Bromination of Arenes with Dimethyl Sulfoxide and Hydrobromic Acid ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1245-1251.	4.9	14
155	Intramolecular Csp ³ â€"H/Câ€"C bond amination of alkyl azides for the selective synthesis of cyclic imines and tertiary amines. Chemical Science, 2020, 11, 4482-4487.	7.4	14
156	<scp>KI</scp> Catalyzed Nitrogenation of Aldehydes and Alcohols: Direct Synthesis of Carbamoyl Azides and Ureas. Chinese Journal of Chemistry, 2017, 35, 845-848.	4.9	13
157	Photoredox-catalyzed hydroxyfluoroalkylation of alkene with simple fluoroalkyl iodides. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 194-201.	3.9	13
158	Cu(I)-Catalyzed $[2+2+1]$ Cycloaddition of Amines, Alkynes, and Ketenes: An Umpolung and Regioselective Approach to Full-Substituted \hat{I}^2 -Pyrrolinones. Organic Letters, 2021, 23, 762-766.	4.6	13
159	CsOH catalyzed aerobic oxidative synthesis of p-quinols from multi-alkyl phenols under mild conditions. Science China Chemistry, 2015, 58, 1334-1339.	8.2	12
160	DMSOâ€Enabled Selective Radical Oâ^H Activation of 1,3(4)â€Diols. Angewandte Chemie, 2020, 132, 20023-20028.	2.0	10
161	Selective αâ€Oxyamination and Hydroxylation of Aliphatic Amides. Angewandte Chemie, 2017, 129, 12475-12479.	2.0	9
162	Metalâ€Free I ₂ â€Catalyzed Highly Selective Dehydrogenative Coupling of Alcohols and Cyclohexenones. Chinese Journal of Chemistry, 2018, 36, 233-240.	4.9	9

#	Article	IF	CITATIONS
163	Selective Carbonâ€Carbon Bond Amination with Redoxâ€Active Aminating Reagents: A Direct Approach to Anilines â€. Chinese Journal of Chemistry, 2021, 39, 3011.	4.9	8
164	Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. European Journal of Medicinal Chemistry, 2022, 238, 114508.	5.5	8
165	Selective Dealkenylative Functionalization of Styrenes via C-C Bond Cleavage. Research, 2020, 2020, 7947029.	5.7	7
166	Dramatic Solvent Effect in the Reduction of 2,3â€Allenoic Acid Esters. A Simple Synthesis of 2,3â€Allenols from 2,3â€Allenoates. Chinese Journal of Chemistry, 2002, 20, 707-710.	4.9	6
167	Acetonitrile Activation: An Effective Twoâ€Carbon Unit for Cyclization. Angewandte Chemie, 2019, 131, 4420-4424.	2.0	6
168	Nâ∈Heterocyclic Carbene Catalyzed Ester Synthesis from Organic Halides through Incorporation of Oxygen Atoms from Air. Angewandte Chemie, 2021, 133, 2168-2172.	2.0	6
169	Electrophilic amidomethylation of arenes with DMSO/MeCN reagents. Organic Chemistry Frontiers, 2022, 9, 2430-2437.	4.5	6
170	Oxidative \hat{I}^2 -Halogenation of Alcohols: A Concise and Diastereoselective Approach to Halohydrins. Synlett, 2019, 30, 437-441.	1.8	5
171	Oxidative Iodohydroxylation of Olefins with DMSO. Acta Chimica Sinica, 2017, 75, 1202.	1.4	5
172	Selective Aerobic Oxygenation of Tertiary Allylic Alcohols with Molecular Oxygen. Angewandte Chemie, 2019, 131, 11144-11148.	2.0	4
173	Discovery of novel ataxia telangiectasia mutated (ATM) kinase modulators: Computational simulation, biological evaluation and cancer combinational chemotherapy study. European Journal of Medicinal Chemistry, 2022, 233, 114196.	5.5	4
174	An Iron-Catalyzed Direct Approach to Amides from Benzyl Azides via C–C Bond Cleavage. Synthesis, 2015, 47, 2971-2975.	2.3	3
175	Radical 1,4/5â€Amino Shift Enables Access to Fluoroalkylâ€Featured Primary β(γ)â€Aminoketones under Metalâ€Free Conditions. Angewandte Chemie, 0, , .	2.0	3
176	Oxygenation of Simple Olefins through Selective Allylic Câ^'C Bond Cleavage: A Direct Approach to Cinnamyl Aldehydes. Angewandte Chemie, 2017, 129, 12102-12106.	2.0	2
177	Nitrogenation Strategy for the Synthesis of Nitriles. , 2017, , 63-109.		2
178	Prroles and Their Benzo Derivatives: Reactivity. , 2022, , 68-155.		2
179	tert-Butyl 4-isopropyl-2-oxo-6-phenyl-3,4-dihydro-2H-pyran-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1103-o1103.	0.2	0
180	Nitrogenation Strategy for the Synthesis of Amides. , 2017, , 29-61.		0

#	Article	IF	CITATIONS
181	Special issue on organic free radical chemistry. Science China Chemistry, 2019, 62, 1423-1424.	8.2	0
182	Titelbild: Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2â€Dichloroethane (Angew. Chem. 14/2019). Angewandte Chemie, 2019, 131, 4459-4459.	2.0	0
183	Nitrogenation Strategy for the Synthesis of N-Heterocyclic Compounds. , 2017, , 167-218.		0
184	Nitrogenation Strategy for the Synthesis of Carbamides. , 2017, , 111-127.		0