Nancy L Engle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7319710/publications.pdf

Version: 2024-02-01

84 papers

4,027 citations

31 h-index

147801

60 g-index

98 all docs 98 docs citations

98 times ranked 5164 citing authors

#	Article	IF	CITATIONS
1	Ozonized biochar filtrate effects on the growth of Pseudomonas putida and cyanobacteria Synechococcus elongatus PCC 7942. Bioresources and Bioprocessing, 2022, 9, .	4.2	O
2	Expanding the Biological Role of Lipo-Chitooligosaccharides and Chitooligosaccharides in Laccaria bicolor Growth and Development. Frontiers in Fungal Biology, 2022, 3, .	2.0	4
3	Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nature Biotechnology, 2022, 40, 335-344.	17.5	195
4	Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. Plant Physiology, 2022, 189, 516-526.	4.8	18
5	Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. Science Advances, 2022, 8, eabm8145.	10.3	26
6	Proteomic and metabolic disturbances in lignin-modified <i>Brachypodium distachyon</i> . Plant Cell, 2022, 34, 3339-3363.	6.6	14
7	Relationships between Sphaerulina musiva Infection and the <i>Populus</i> Microbiome and Metabolome. MSystems, 2022, 7, .	3 . 8	2
8	ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. Journal of Experimental Botany, 2021, 72, 2710-2726.	4.8	18
9	Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptorâ€like kinase. Plant Biotechnology Journal, 2021, 19, 2454-2468.	8.3	14
10	Overexpression of a <i>Prefoldin \hat{l}^2</i> subunit gene reduces biomass recalcitrance in the bioenergy crop <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 859-871.	8.3	17
11	Identification of functional single nucleotide polymorphism of Populus trichocarpa PtrEPSPâ€₹F and determination of its transcriptional effect. Plant Direct, 2020, 4, e00178.	1.9	4
12	Isolation, Characterization, and Pathogenicity of Two Pseudomonas syringae Pathovars from Populus trichocarpa Seeds. Microorganisms, 2020, 8, 1137.	3.6	9
13	Arabidopsis Câ€terminal binding protein ANGUSTIFOLIA modulates transcriptional coâ€regulation of <i>MYB46</i> and <i>WRKY33</i> New Phytologist, 2020, 228, 1627-1639.	7.3	17
14	Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metabolic Engineering, 2020, 62, 95-105.	7.0	27
15	Plant Hosts Modify Belowground Microbial Community Response to Extreme Drought. MSystems, 2020, 5, .	3.8	36
16	Impacts of Soil Microbiome Variations on Root Colonization by Fungi and Bacteria and on the Metabolome of <i>Populus tremula</i> À— <i>alba</i> . Phytobiomes Journal, 2020, 4, 142-155.	2.7	24
17	Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites. MicrobiologyOpen, 2019, 8, e00639.	3.0	15
18	Microfluidics and Metabolomics Reveal Symbiotic Bacterial–Fungal Interactions Between Mortierella elongata and Burkholderia Include Metabolite Exchange. Frontiers in Microbiology, 2019, 10, 2163.	3.5	37

#	Article	IF	CITATIONS
19	Horizontal transfer of a pathway for coumarate catabolism unexpectedly inhibits purine nucleotide biosynthesis. Molecular Microbiology, 2019, 112, 1784-1797.	2.5	5
20	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop <i>Populus</i> . Sustainable Energy and Fuels, 2019, 3, 195-207.	4.9	27
21	Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome, 2019, 7, 76.	11.1	109
22	Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL-COA 3-O-METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. Biotechnology for Biofuels, 2019, 12, 108.	6.2	18
23	4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nature Communications, 2019, 10, 1994.	12.8	171
24	The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Annals of Botany, 2019, 124, 617-626.	2.9	45
25	Scavenging organic nitrogen and remodelling lipid metabolism are key survival strategies adopted by the endophytic fungi, <i>Serendipita vermifera</i> and <i>Serendipita bescii</i> to alleviate nitrogen and phosphorous starvation in vitro. Environmental Microbiology Reports, 2019, 11, 548-557.	2.4	18
26	Ectopic Defense Gene Expression Is Associated with Growth Defects in <i>Medicago truncatula </i> Lignin Pathway Mutants. Plant Physiology, 2019, 181, 63-84.	4.8	27
27	Underground Azelaic Acid–Conferred Resistance to <i>Pseudomonas syringae</i> in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2019, 32, 86-94.	2.6	35
28	Mathematical models of lignin biosynthesis. Biotechnology for Biofuels, 2018, 11, 34.	6.2	32
29	Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics. Biotechnology for Biofuels, 2018, 11, 98.	6.2	16
30	A physical catalyst for the electrolysis of nitrogen to ammonia. Science Advances, 2018, 4, e1700336.	10.3	264
31	Abiotic Stresses Shift Belowground <i>Populus</i> -Associated Bacteria Toward a Core Stress Microbiome. MSystems, 2018, 3, .	3.8	89
32	A dynamic model of lignin biosynthesis in Brachypodium distachyon. Biotechnology for Biofuels, 2018, 11, 253.	6.2	11
33	<scp>Genomeâ€wide association studies</scp> and expressionâ€based quantitative trait loci analyses reveal roles of <scp>HCT</scp> 2 in caffeoylquinic acid biosynthesis and its regulation by defenseâ€responsive transcription factors in <i>Populus</i> . New Phytologist, 2018, 220, 502-516.	7. 3	112
34	A 5-Enolpyruvylshikimate 3-Phosphate Synthase Functions as a Transcriptional Repressor in <i>Populus</i>). Plant Cell, 2018, 30, 1645-1660.	6.6	56
35	Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus) Tj ETQq1 1 0.78	34314 rgB 2.5	T /Overlock
36	Modification of plant cell wall chemistry impacts metabolome and microbiome composition in Populus PdKOR1 RNAi plants. Plant and Soil, 2018, 429, 349-361.	3.7	16

#	Article	IF	Citations
37	Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. Biotechnology for Biofuels, 2017, 10, 14.	6.2	30
38	Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum. Scientific Reports, 2017, 7, 43355.	3.3	24
39	Characterization of a novel, ubiquitous fungal endophyte from the rhizosphere and root endosphere of Populus trees. Fungal Ecology, 2017, 27, 78-86.	1.6	27
40	Insights of biomass recalcitrance in natural <i>Populus trichocarpa</i> variants for biomass conversion. Green Chemistry, 2017, 19, 5467-5478.	9.0	82
41	Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 138, 46-53.	2.9	11
42	Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnology for Biofuels, 2017, 10, 12.	6.2	30
43	Overexpression of a Domain of Unknown Function 231-containing protein increases O-xylan acetylation and cellulose biosynthesis in Populus. Biotechnology for Biofuels, 2017, 10, 311.	6.2	26
44	A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization. Frontiers in Microbiology, 2016, 7, 491.	3.5	48
45	Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Frontiers in Plant Science, 2016, 7, 497.	3.6	113
46	Down-Regulation of KORRIGAN-Like Endo- \hat{l}^2 -1,4-Glucanase Genes Impacts Carbon Partitioning, Mycorrhizal Colonization and Biomass Production in Populus. Frontiers in Plant Science, 2016, 7, 1455.	3.6	32
47	Knockdown of a laccase in <i>Populus deltoides</i> confers altered cell wall chemistry and increased sugar release. Plant Biotechnology Journal, 2016, 14, 2010-2020.	8.3	64
48	Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure. Biotechnology for Biofuels, 2016, 9, 31.	6.2	54
49	Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nature Plants, 2016, 2, 16178.	9.3	158
50	Scaling nitrogen and carbon interactions: what are the consequences of biological buffering?. Ecology and Evolution, 2015, 5, 2839-2850.	1.9	4
51	ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in <i>Arabidopsis</i> Molecular Plant-Microbe Interactions, 2015, 28, 455-466.	2.6	56
52	Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Systems Biology, 2015, 9, 30.	3.0	24
53	Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis. Phytochemistry, 2015, 112, 170-178.	2.9	31
54	A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E. Biotechnology for Biofuels, 2014, 7, 165.	6.2	17

#	Article	IF	Citations
55	The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnology for Biofuels, 2014, 7, 155.	6.2	96
56	Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnology for Biofuels, 2014, 7, 25.	6.2	25
57	<i>Populus trichocarpa</i> and <i>Populus deltoides</i> Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus <i>Laccaria bicolor</i> Molecular Plant-Microbe Interactions, 2014, 27, 546-556.	2.6	69
58	Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels, 2013, 6, 71.	6.2	118
59	Characterization of <i>Clostridium thermocellum</i> strains with disrupted fermentation end-product pathways. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 725-734.	3.0	50
60	The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, 2013, 6, 110.	6.2	191
61	Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Bioresource Technology, 2013, 130, 125-135.	9.6	33
62	Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses. PLoS ONE, 2013, 8, e68886.	2.5	64
63	Industrial Robustness: Understanding the Mechanism of Tolerance for the Populus Hydrolysate-Tolerant Mutant Strain of Clostridium thermocellum. PLoS ONE, 2013, 8, e78829.	2.5	21
64	Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genomics, 2012, 13, 336.	2.8	73
65	Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnology for Biofuels, 2012, 5, 71.	6.2	96
66	Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnology for Biofuels, 2012, 5, 81.	6.2	46
67	Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnology for Biofuels, 2012, 5, 2.	6.2	125
68	Genetic dissection of transcript, metabolite, growth and wood property traits in an F2 pseudo-backcross pedigree of Eucalyptus grandis x E. urophylla. BMC Proceedings, 2011, 5, .	1.6	3
69	Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiology and Biochemistry, 2010, 48, 279-287.	5.8	65
70	Efficient Degradation of Lignocellulosic Plant Biomass, without Pretreatment, by the Thermophilic Anaerobe " <i>Anaerocellum thermophilum</i> ―DSM 6725. Applied and Environmental Microbiology, 2009, 75, 4762-4769.	3.1	187
71	Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics, 2009, 10, 34.	2.8	138
72	Crystalline hydrogen-bonded nanocolumns of cyclic thiourea octamers. CrystEngComm, 2007, 9, 452.	2.6	25

#	Article	IF	CITATIONS
73	Combined Extraction of Cesium and Strontium from Alkaline Nitrate Solutions. Solvent Extraction and Ion Exchange, 2006, 24, 197-217.	2.0	19
74	An Equilibrium Model of Pseudo-Hydroxide Extraction in the Separation of Sodium Hydroxide from Aqueous Solutions using Lipophilic Fluorinated Alcohols and Phenols. Separation Science and Technology, 2005, 40, 725-738.	2.5	8
75	Synthesis and Properties of Calix[4]areneâ€bis[4â€(2â€ethylhexyl)benzoâ€erownâ€6], A Cesium Extractant with Improved Solubility. Solvent Extraction and Ion Exchange, 2004, 22, 611-636.	2.0	34
76	Rational Design of Cesium-Selective Ionophores: Dihydrocalix[4]arene Crown-6 Ethers. European Journal of Organic Chemistry, 2003, 2003, 4862-4869.	2.4	22
77	New amino-functionalized 1,3-alternate calix[4] arene bis- and mono-(benzo-crown-6 ethers) for pH-switched cesium nitrate extraction. Tetrahedron Letters, 2003, 44, 5397-5401.	1.4	29
78	The s-cis and s-trans π complexes of B-bromocatecholborane and (E)-2-butenal. Journal of Chemical Research, 2003, 2003, 726-727.	1.3	0
79	Selective Separation of Hydroxide from Alkaline Nuclear Tank Waste by Liquidâ^'Liquid Extraction with Weak Hydroxy Acids. Environmental Science & Envi	10.0	28
80	Title is missing!. Journal of Chemical Crystallography, 2002, 32, 33-38.	1.1	0
81	SOLVATOCHROMIC SOLVENT POLARITY MEASUREMENTS OF ALCOHOL SOLVENT MODIFIERS AND CORRELATION WITH CESIUM EXTRACTION STRENGTH1â€. Solvent Extraction and Ion Exchange, 2001, 19, 1037-1058.	2.0	29
82	Tribenzo-18-crown-6 acetonitrile disolvate. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 1359-1360.	0.4	2
83	Development of Process Chemistry for the Removal of Cesium from Acidic Nuclear Waste by Calix[4]arene-crown-6 Ethers. ACS Symposium Series, 2000, , 26-44.	0.5	32
84	Benzyl Phenol Derivatives: Extraction Properties of Calixarene Fragments. ACS Symposium Series, 2000, , 86-106.	0.5	4