John D Fraser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7319206/publications.pdf

Version: 2024-02-01

50 3,038 28 48 papers citations h-index g-index

51 51 51 51 51 2651

51 51 51 2651 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The economic and health burdens of diseases caused by group A Streptococcus in New Zealand. International Journal of Infectious Diseases, 2021, 103, 176-181.	3.3	18
2	Uncoupling Molecular Testing for SARS-CoV-2 From International Supply Chains. Frontiers in Public Health, 2021, 9, 808751.	2.7	2
3	The global response to the COVID-19 pandemic: how have immunology societies contributed?. Nature Reviews Immunology, 2020, 20, 594-602.	22.7	17
4	Impact of Superantigen-Producing Bacteria on T Cells from Tonsillar Hyperplasia. Pathogens, 2019, 8, 90.	2.8	9
5	Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nature Genetics, 2019, 51, 1035-1043.	21.4	120
6	Enterotoxins can support CAR T cells against solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25229-25235.	7.1	16
7	An economic case for a vaccine to prevent group A streptococcus skin infections. Vaccine, 2018, 36, 6968-6978.	3.8	41
8	Therapeutic potential of staphylococcal superantigen-like protein 7 for complement-mediated hemolysis. Journal of Molecular Medicine, 2018, 96, 965-974.	3.9	5
9	Development of an opsonophagocytic killing assay for group a streptococcus. Vaccine, 2018, 36, 3756-3763.	3.8	23
10	A potential role for staphylococcal and streptococcal superantigens in driving skewing of TCR \hat{V}^2 subsets in tonsillar hyperplasia. Medical Microbiology and Immunology, 2017, 206, 337-346.	4.8	9
11	Clinical development strategy for a candidate group A streptococcal vaccine. Vaccine, 2017, 35, 2007-2014.	3.8	18
12	Staphylococcal enterotoxin-like X (SEIX) is a unique superantigen with functional features of two major families of staphylococcal virulence factors. PLoS Pathogens, 2017, 13, e1006549.	4.7	32
13	Status of research and development of vaccines for Streptococcus pyogenes. Vaccine, 2016, 34, 2953-2958.	3.8	113
14	Comparative M-protein analysis of Streptococcus pyogenes from pharyngitis and skin infections in New Zealand: Implications for vaccine development. BMC Infectious Diseases, 2016, 16, 561.	2.9	25
15	M-Protein Analysis of Streptococcus pyogenes Isolates Associated with Acute Rheumatic Fever in New Zealand. Journal of Clinical Microbiology, 2015, 53, 3618-3620.	3.9	43
16	Iridium-Catalysed C–H Borylation Facilitates a Total Synthesis of the HRV 3C Protease Inhibitor (±)-Thysanone. Synlett, 2014, 25, 556-558.	1.8	7
17	Streptococcal superantigens: categorization and clinical associations. Trends in Molecular Medicine, 2014, 20, 48-62.	6.7	97
18	High Usage of Topical Fusidic Acid and Rapid Clonal Expansion of Fusidic Acid–Resistant Staphylococcus aureus: A Cautionary Tale. Clinical Infectious Diseases, 2014, 59, 1451-1454.	5.8	64

#	Article	IF	CITATIONS
19	Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine, 2014, 32, 3713-3720.	3.8	44
20	Synthesis and Biological Evaluation of 7â€Deoxy Analogues of the Human Rhinovirus 3C Protease Inhibitor Thysanone. European Journal of Organic Chemistry, 2014, 2014, 122-128.	2.4	9
21	An Engineered Non-Toxic Superantigen Increases Cross Presentation of Hepatitis B Virus Nucleocapsids by Human Dendritic Cells. PLoS ONE, 2014, 9, e93598.	2.5	12
22	Full functional activity of SSL7 requires binding of both complement C5 and IgA. Immunology and Cell Biology, 2013, 91, 469-476.	2.3	24
23	A modified superantigen rescues Ly6Gâ^'CD11b+blood monocyte suppressor function and suppresses antigen-specific inflammation in EAE. Autoimmunity, 2013, 46, 269-278.	2.6	5
24	Characterization of a Mouse-Adapted Staphylococcus aureus Strain. PLoS ONE, 2013, 8, e71142.	2.5	58
25	Antigen Targeting to Major Histocompatibility Complex Class II with Streptococcal Mitogenic Exotoxin Z-2 M1, a Superantigen-Based Vaccine Carrier. Vaccine Journal, 2012, 19, 574-586.	3.1	6
26	Structural and Functional Properties of Staphylococcal Superantigen-Like Protein 4. Infection and Immunity, 2012, 80, 4004-4013.	2.2	33
27	Synthesis and anti-Helicobacter pylori activity of analogues of spirolaxine methyl ether. MedChemComm, 2012, 3, 938.	3.4	10
28	<i>Staphylococcus aureus</i> regulates the expression and production of the staphylococcal superantigenâ€like secreted proteins in a Rotâ€dependent manner. Molecular Microbiology, 2011, 81, 659-675.	2.5	53
29	Clarifying the Mechanism of Superantigen Toxicity. PLoS Biology, 2011, 9, e1001145.	5.6	42
30	Specificity of Staphylococcal Superantigen-Like Protein 10 toward the Human IgG1 Fc Domain. Journal of Immunology, 2010, 184, 6283-6292.	0.8	65
31	Staphylococcal Superantigen Super-Domains in Immune Evasion. Critical Reviews in Immunology, 2010, 30, 149-165.	0.5	38
32	Targeting Antigen to MHC Class II Molecules Promotes Efficient Cross-Presentation and Enhances Immunotherapy. Journal of Immunology, 2009, 182, 1260-1269.	0.8	37
33	The crystal structure of staphylococcal superantigenâ€like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Molecular Microbiology, 2008, 67, 473-473.	2.5	0
34	The bacterial superantigen and superantigenâ€like proteins. Immunological Reviews, 2008, 225, 226-243.	6.0	415
35	Crystal Structures of the Staphylococcal Toxin SSL5 in Complex with Sialyl Lewis X Reveal a Conserved Binding Site that Shares Common Features with Viral and Bacterial Sialic Acid Binding Proteins. Journal of Molecular Biology, 2007, 374, 1298-1308.	4.2	62
36	The crystal structure of staphylococcal superantigenâ€like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Molecular Microbiology, 2007, 66, 1342-1355.	2.5	85

#	Article	IF	CITATIONS
37	The Staphylococcal Superantigen-Like Protein 7 Binds IgA and Complement C5 and Inhibits IgA-FcαRl Binding and Serum Killing of Bacteria. Journal of Immunology, 2005, 174, 2926-2933.	0.8	237
38	Bacterial superantigens and immune evasion. , 2003, , 171-200.		1
39	The Three-dimensional Structure of a Superantigen-like Protein, SET3, from a Pathogenicity Island of the Staphylococcus aureus Genome. Journal of Biological Chemistry, 2002, 277, 32274-32281.	3.4	77
40	Superantigens – powerful modifiers of the immune system. Trends in Molecular Medicine, 2000, 6, 125-132.	2.6	147
41	The Streptococcal Superantigen Smez Exhibits Wide Allelic Variation, Mosaic Structure, and Significant Antigenic Variation. Journal of Experimental Medicine, 2000, 191, 1765-1776.	8.5	78
42	Superantigens in human disease. Journal of Clinical Immunology, 1999, 19, 149-157.	3.8	43
43	Superantigens: Just Like Peptides Only Different. Journal of Experimental Medicine, 1998, 187, 819-821.	8.5	39
44	The Superantigen Streptococcal Pyrogenic Exotoxin C (SPE-C) Exhibits a Novel Mode of Action. Journal of Experimental Medicine, 1997, 186, 375-383.	8.5	76
45	Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Nature Structural Biology, 1997, 4, 635-643.	9.7	104
46	T-Cell Receptor beta-Chain Binding to Enterotoxin Superantigens. Immunological Reviews, 1993, 131, 61-78.	6.0	41
47	Enterotoxin residues determining T-cell receptor $\hat{V^2}$ binding specificity. Nature, 1992, 359, 841-843.	27.8	87
48	Superantigen data. Nature, 1992, 360, 423-423.	27.8	4
49	High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature, 1989, 339, 221-223.	27.8	428
50	The Streptococcal Superantigens. , 0, , 1-20.		0