Jin Tae Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7318096/publications.pdf

Version: 2024-02-01

279798 206112 2,547 60 23 48 citations h-index g-index papers 61 61 61 2876 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-Scale Binary Pattern Encoding Network for Cancer Classification in Pathology Images. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1152-1163.	6.3	13
2	SONNET: A Self-Guided Ordinal Regression Neural Network for Segmentation and Classification of Nuclei in Large-Scale Multi-Tissue Histology Images. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3218-3228.	6.3	23
3	Unsupervised Tumor Characterization via Conditional Generative Adversarial Networks. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 348-357.	6.3	7
4	PAIP 2019: Liver cancer segmentation challenge. Medical Image Analysis, 2021, 67, 101854.	11.6	52
5	Ranking Loss: A Ranking-Based Deep Neural Network for Colorectal Cancer Grading in Pathology Images. Lecture Notes in Computer Science, 2021, , 540-549.	1.3	3
6	3-D multitask deep neural networks for collateral imaging from dynamic susceptibility contrast-enhanced magnetic resonance perfusion. , 2021, , .		0
7	Distance ordinal regression loss for an improved nuclei segmentation. , 2021, , .		1
8	Semi-supervised learning for an improved diagnosis of COVID-19 in CT images. PLoS ONE, 2021, 16, e0249450.	2.5	12
9	Joint categorical and ordinal learning for cancer grading in pathology images. Medical Image Analysis, 2021, 73, 102206.	11.6	14
10	Region-aggregated attention CNN for disease detection in fruit images. PLoS ONE, 2021, 16, e0258880.	2.5	5
11	Dual-Encoding Style Transfer for Korean Font Generation. , 2021, , .		O
12	Deep regression neural networks for collateral imaging from dynamic susceptibility contrast-enhanced magnetic resonance perfusion in acute ischemic stroke. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 151-162.	2.8	5
13	A Multi-Organ Nucleus Segmentation Challenge. IEEE Transactions on Medical Imaging, 2020, 39, 1380-1391.	8.9	259
14	Fusarium Wilt of Radish Detection Using RGB and Near Infrared Images from Unmanned Aerial Vehicles. Remote Sensing, 2020, 12, 2863.	4.0	25
15	Improving detection of prostate cancer foci via information fusion of MRI and temporal enhanced ultrasound. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1215-1223.	2.8	20
16	Deep Learning Framework for Epithelium Density Estimation in Prostate Multi-Parametric Magnetic Resonance Imaging., 2020,,.		2
17	Deep Neural Networks for Korean Fonts Generation. , 2020, , .		O
18	Multi-task Deep Learning for Colon Cancer Grading. , 2020, , .		12

#	Article	IF	CITATIONS
19	Improving Dense Pixelwise Prediction of Epithelial Density Using Unsupervised Data Augmentation for Consistency Regularization. Lecture Notes in Computer Science, 2020, , 572-581.	1.3	2
20	Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Medical Image Analysis, 2019, 58, 101563.	11.6	562
21	BACH: Grand challenge on breast cancer histology images. Medical Image Analysis, 2019, 56, 122-139.	11.6	356
22	Methods for Segmentation and Classification of Digital Microscopy Tissue Images. Frontiers in Bioengineering and Biotechnology, 2019, 7, 53.	4.1	169
23	A dense multi-path decoder for tissue segmentation in histopathology images. Computer Methods and Programs in Biomedicine, 2019, 173, 119-129.	4.7	13
24	Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1009-1016.	2.8	17
25	Scale embedding shared neural networks for multiscale histological analysis of prostate cancer. , 2019, , .		3
26	Deep convolution and up-convolution network for plant segmentation. , 2018, , .		0
27	Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1201-1209.	2.8	8
28	Learning from Noisy Label Statistics: Detecting High Grade Prostate Cancer in Ultrasound Guided Biopsy. Lecture Notes in Computer Science, 2018, , 21-29.	1.3	7
29	Deep Recurrent Neural Networks for Prostate Cancer Detection: Analysis of Temporal Enhanced Ultrasound. IEEE Transactions on Medical Imaging, 2018, 37, 2695-2703.	8.9	57
30	Micro and Macro Breast Histology Image Analysis by Partial Network Re-use. Lecture Notes in Computer Science, 2018, , 895-902.	1.3	7
31	Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1687-1696.	2.8	47
32	Multiview boosting digital pathology analysis of prostate cancer. Computer Methods and Programs in Biomedicine, 2017, 142, 91-99.	4.7	37
33	Convolutional neural network based deep-learning architecture for prostate cancer detection on multiparametric magnetic resonance images. Proceedings of SPIE, 2017, , .	0.8	30
34	Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 1111-1121.	2.8	25
35	Detection of prostate cancer in multiparametric MRI using random forest with instance weighting. Journal of Medical Imaging, 2017, 4, 024506.	1.5	33
36	Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 1293-1305.	2.8	36

#	Article	IF	Citations
37	Lumen-based detection of prostate cancer via convolutional neural networks. Proceedings of SPIE, 2017, , .	0.8	6
38	Leukocytes Classification and Segmentation in Microscopic Blood Smear: A Resource-Aware Healthcare Service in Smart Cities. IEEE Access, 2017, 5, 3475-3489.	4.2	81
39	Biopsy-guided learning with deep convolutional neural networks for Prostate Cancer detection on multiparametric MRI., 2017,,.		28
40	Nuclear Architecture Analysis of Prostate Cancer via Convolutional Neural Networks. IEEE Access, 2017, 5, 18526-18533.	4.2	35
41	Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles. Journal of Applied Remote Sensing, 2017, 11, 1.	1.3	78
42	Prostate Cancer: A Correlative Study of Multiparametric MR Imaging and Digital Histopathology. Radiology, 2017, 285, 147-156.	7.3	33
43	Automated prostate tissue referencing for cancer detection and diagnosis. BMC Bioinformatics, 2016, 17, 227.	2.6	23
44	Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 947-956.	2.8	34
45	High-definition Fourier transform infrared spectroscopic imaging of prostate tissue. Proceedings of SPIE, 2016, , .	0.8	4
46	Correlation of magnetic resonance imaging with digital histopathology in prostate. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 657-666.	2.8	22
47	Classifying Cancer Grades Using Temporal Ultrasound for Transrectal Prostate Biopsy. Lecture Notes in Computer Science, 2016, , 653-661.	1.3	7
48	Improving Prediction of Prostate Cancer Recurrence using Chemical Imaging. Scientific Reports, 2015, 5, 8758.	3.3	51
49	Stromal-epithelial responses to fractionated radiotherapy in a breast cancer microenvironment. Cancer Cell International, 2015, 15, 67.	4.1	10
50	ls Visual Registration Equivalent to Semiautomated Registration in Prostate Biopsy?. BioMed Research International, 2015, 2015, 1-7.	1.9	22
51	Efficient data mining for local binary pattern in texture image analysis. Expert Systems With Applications, 2015, 42, 4529-4539.	7.6	19
52	Automated prostate cancer detection using <i>T</i> 2â€weighted and highâ€ <i>b</i> â€value diffusionâ€weighted magnetic resonance imaging. Medical Physics, 2015, 42, 2368-2378.	3.0	81
53	Augmenting MRI–transrectal ultrasound-guided prostate biopsy with temporal ultrasound data: a clinical feasibility study. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 727-735.	2.8	11
54	Ultrasound-Based Detection of Prostate Cancer Using Automatic Feature Selection with Deep Belief Networks. Lecture Notes in Computer Science, 2015, , 70-77.	1.3	21

#	Article	IF	CITATIONS
55	Nucleus detection using gradient orientation information and linear least squares regression. Proceedings of SPIE, 2015, , .	0.8	2
56	A multiview boosting approach to tissue segmentation. , 2014, , .		3
57	Ultrasound-Based Predication of Prostate Cancer in MRI-guided Biopsy. Lecture Notes in Computer Science, 2014, , 142-150.	1.3	3
58	Analysis of Variance in Spectroscopic Imaging Data from Human Tissues. Analytical Chemistry, 2012, 84, 1063-1069.	6.5	34
59	Multimodal microscopy for automated histologic analysis of prostate cancer. BMC Cancer, 2011, 11, 62.	2.6	76
60	A new segmentation framework for infrared spectroscopic imaging using frequent pattern mining. , $2011, , .$		0