Alyson E Mitchell

List of Publications by Year in descending order

Source: https:||exaly.com/author-pdf/7317643/publications.pdf
Version: 2024-02-01

1	Comparison of the Total Phenolic and Ascorbic Acid Content of Freeze-Dried and Air-Dried Marionberry, Strawberry, and Corn Grown Using Conventional, Organic, and Sustainable Agricultural Practices. Journal of Agricultural and Food Chemistry, 2003, 51, 1237-1241.	5.2	782
2	Identification of Procyanidins in Cocoa (Theobromacacao) and Chocolate Using High-Performance Liquid Chromatography/Mass Spectrometry. Journal of Agricultural and Food Chemistry, 1999, 47, 490-496.	5.2	426
3	HPLC Method for the Quantification of Procyanidins in Cocoa and Chocolate Samples and Correlation to Total Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 1999, 47, 4184-4188.	5.2	360
4	Copper, lysyl oxidase, and extracellular matrix protein cross-linking. American Journal of Clinical Nutrition, 1998, 67, 996S-1002S.	4.7	294
5	Ten-Year Comparison of the Influence of Organic and Conventional Crop Management Practices on the Content of Flavonoids in Tomatoes. Journal of Agricultural and Food Chemistry, 2007, 55, 6154-6159.	5.2	257
6	The Flavonoid Glycosides and Procyanidin Composition of Deglet Noor Dates (Phoenix dactylifera). Journal of Agricultural and Food Chemistry, 2006, 54, 2405-2411.	5.2	212
7	Three-Year Comparison of the Content of Antioxidant Microconstituents and Several Quality Characteristics in Organic and Conventionally Managed Tomatoes and Bell Peppers. Journal of Agricultural and Food Chemistry, 2006, 54, 8244-8252.	5.2	183
8	Factors Influencing Phenolic Compounds in Table Olives (Olea europaea). Journal of Agricultural and Food Chemistry, 2012, 60, 7081-7095.	5.2	173
9	Influence of Cooking on Anthocyanins in Black Rice (<i>Oryza sativa</i> L. <i>japonica</i> var. SBR). Journal of Agricultural and Food Chemistry, 2009, 57, 1908-1914.	5.2	149
10	HS-SPME CC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chemistry, 2014, 151, 31-39.	8.2	139
11	Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. Journal of Food Composition and Analysis, 2009, 22, 637-643.	3.9	132
12	Effect of Organic and Conventional Cropping Systems on Ascorbic Acid, Vitamin C, Flavonoids, Nitrate, and Oxalate in 27 Varieties of Spinach (Spinacia oleracea L.). Journal of Agricultural and Food Chemistry, 2012, 60, 3144-3150.	5.2	124
13	Physiological Importance of Quinoenzymes and the O-Quinone Family of Cofactors. Journal of Nutrition, 2000, 130, 719-727.	2.9	123

 Antioxidative Activities of Heterocyclic Compounds Formed in Brewed Coffee. Journal of Agricultural
 Processing-induced changes in total phenolics and procyanidins in clingstone peaches. Journal of the Science of Food and Agriculture, 2003, 83, 56-63.
3.5

80

Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus) Tj ETQq1 10.784314 rgBT $/ \mathrm{O}_{68}$ verlock

Review of the Sensory and Chemical Characteristics of Almond (<i>Prunus dulcis</i>) Flavor. Journal of Agricultural and Food Chemistry, 2019, 67, 2743-2753.
5.2

65

> Liquid Chromatography/Mass Spectrometry Investigation of the Impact of Thermal Processing and
> Storage on Peach Procyanidins. Journal of Agricultural and Food Chemistry, 2004, 52, 2366-2371.
5.2

64

Quantification of Amygdalin in Nonbitter, Semibitter, and Bitter Almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS. Journal of Agricultural and Food Chemistry, 2013, 61, 7754-7759.
5.2

58
27 Influence of Dietary Quercetin on Clutathione Redox Status in Mice. Journal of Agricultural and

> Food Chemistry, 2008, 56, 830-836.
$5.2 \quad 57$
5.2

57

Understanding the Native Californian Diet:Â Identification of Condensed and Hydrolyzable Tannins in 28 Tanoak Acorns (Lithocarpus densiflorus). Journal of Agricultural and Food Chemistry, 2006, 54,
5.2

7686-7691.

$$
\begin{aligned}
& \text { Influence of Storage on Volatile Profiles in Roasted Almonds (<i>Prunus dulcis</i>). Journal of } \\
& \text { Agricultural and Food Chemistry, 2014, 62, 11236-11245. }
\end{aligned}
$$

$5.2 \quad 51$

Use of Near-Infrared Spectroscopy and Chemometrics for the Nondestructive Identification of
30 Concealed Damage in Raw Almonds (<i>Prunus dulcis</i>). Journal of Agricultural and Food
5.2

Chemistry, 2016, 64, 5958-5962.
31 Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant
Seeds. Molecules, 2021, 26, 2253.
3.8

49

Effects of industrial tomato paste processing on ascorbic acid, flavonoids and carotenoids and their
3.5

48 stability over oneâ€year storage. Journal of the Science of Food and Agriculture, 2012, 92, 23-28.

Influence of California-Style Black Ripe Olive Processing on the Formation of Acrylamide. Journal of Agricultural and Food Chemistry, 2014, 62, 8716-8721.
5.2

45
Agricultural and Food Chemistry, 2014, 62, 8716-8721.
$34 \quad$ Chemical and Sensory Characterization of Oxidative Changes in Roasted Almonds Undergoing
Accelerated Shelf Life. Journal of Agricultural and Food Chemistry, 2017, 65, 2549-2563.

> A longâ€term comparison of the influence of organic and conventional crop management practices on
> the content of the glycoalkaloid $\langle\mathrm{i}\rangle \hat{\mid} \pm\langle\mid \mathrm{i}\rangle$ â€tomatine in tomatoes. Journal of the Science of Food and
> Agriculture, 2013, $93,1537-1542$.
3.5

40

Non-galloylated and galloylated proanthocyanidin oligomers in grape seeds fromVitus vinifera L. cv.

37	UHPLC-(ESI)QTOF MS/MS Profiling of Quercetin Metabolites in Human Plasma Postconsumption of Applesauce Enriched with Apple Peel and Onion. Journal of Agricultural and Food Chemistry, 2012, 60, 8510-8520.	5.2	39
38	Accumulation of Advanced Glycation Endproducts in Aging Male Fischer 344 Rats during Long-Term Feeding of Various Dietary Carbohydrates. Journal of Nutrition, 2000, 130, 1247-1255.	2.9	38
39	Purification, Mass Spectrometric Characterization, and Covalent Modification of Murine Clutathione S-Transferases. Chemical Research in Toxicology, 1995, 8, 1054-1062.	3.3	37
40	Ultrahigh-Pressure Liquid Chromatography Triple-Quadrupole Tandem Mass Spectrometry Quantitation of Polyphenols and Secoiridoids in California-Style Black Ripe Olives and Dry Salt-Cured Olives. Journal of Agricultural and Food Chemistry, 2015, 63, 2400-2405.	5.2	37
41	A Comparison of Polyvinylpolypyrrolidone (PVPP), Silica Xerogel and a Polyvinylpyrrolidone (PVP)-Silica Co-Product for Their Ability to Remove Polyphenols from Beer. Journal of the Institute of Brewing, 2005, 111, 20-25.	2.3	36
42	Acrylamide Formation in Almonds (Prunus dulcis): Influences of Roasting Time and Temperature, Precursors, Varietal Selection, and Storage. Journal of Agricultural and Food Chemistry, 2011, 59, 8225-8232.	5.2	32
43	Regulation of Phase II Enzymes by Genistein and Daidzein in Male and Female Swiss Webster Mice. Journal of Medicinal Food, 2009, 12, 1227-1237.	1.5	29
44	Quantitation of Oleuropein and Related Phenolics in Cured Spanish-Style Green, California-Style Black Ripe, and Greek-Style Natural Fermentation Olives. Journal of Agricultural and Food Chemistry, 2018, 66, 2121-2128.	5.2	29
45	Identification of Clutathione-Related Quercetin Metabolites in Humans. Chemical Research in Toxicology, 2006, 19, 1525-1532.	3.3	28
46	Flavor and Acceptance of Roasted California Almonds During Accelerated Storage. Journal of Agricultural and Food Chemistry, 2018, 66, 1222-1232.	5.2	28
47	Structural and Functional Consequences of Haloenol Lactone Inactivation of Murine and Human Clutathione S-Transferase. Biochemistry, 1998, 37, 6752-6759.	2.5	26
48	Profiling the trace metal composition of wine as a function of storage temperature and packaging type. Journal of Analytical Atomic Spectrometry, 2013, 28, 1288.	3.0	26
49	A comparison of the chemical composition and antioxidant activity of several new earlyâ€॰to midâ€sea apple cultivars for a warmer climate with traditional cultivars. Journal of the Science of Food and Agriculture, 2019, 99, 4712-4724.	3.5	25

Assessing the Fate and Bioavailability of Clucosinolates in Kale (<i>Brassica oleracea</i>) Using

Defining the Sensory Profiles of Raw Almond (<i>Prunus dulcis</i>) Varieties and the Contribution of
56 Key Chemical Compounds and Physical Properties. Journal of Agricultural and Food Chemistry, 2019,
Isozyme- and gender-specific induction of glutathione S-transferases by flavonoids. Archives of
Toxicology, 2007, 81, 777-784.
16

Characterization of glutathione S-transferases in juvenile white sturgeon. Aquatic Toxicology, 2005,
71, 203-214.

A comparison of flavonoids, carotenoids and vitamin C in commercial organic and conventional marinara pasta sauce. Journal of the Science of Food and Agriculture, 2008, 88, 344-354.

63 | CHARACTERIZATION OF URINARY ISOFLAVONE METABOLITES EXCRETED AFTER THE CONSUMPTION |
| :--- |
| FLOUR OR SOYBEAN PASTE USING LC-(ESI)MS/MS. Journal of Food Biochemistry, 2011, 35, 1474-1485. |
| 64 Monitoring selected monomeric polyphenol composition in pre- and post-fermentation products of |
| Vitis vinifera L. cv. AirÃ©n and cv. Grenache noir. LWT - Food Science and Technology, 2015, 60, 552-5 |
| Quantification of individual glutathione S-transferase isozymes in hepatic and pulmonary tissues of |
| naphthalene-tolerant mice. Archives of Toxicology, 2000, 74, 215-221. |

66 The influence of diet composition on phase I and II biotransformation enzyme induction. Archives of
Toxicology, 2008, 82, 893-901.
$4.2 \quad 9$
67 Certified food dyes in over the counter medicines and supplements marketed for children and pregnant women. Food and Chemical Toxicology, 2020, 143, 111499.

Acceleration of lipid oxidation in raw stored almond kernels in response to postharvest moisture exposure. Journal of the Science of Food and Agriculture, 2022, 102, 1155-1164.
$3.5 \quad 9$

The Almond (<i>Prunus dulcis</i>): Chemical Properties, Utilization, and Valorization of Coproducts.
Annual Review of Food Science and Technology, 2022, 13, 145-166.

Direct liquid chromatographyâ€"mass spectrometry method for the detection of glutathione
70 S-transferase isozymes and investigation of their expression in response to dietary flavone. Journal of
2.3

8
Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 809, 331-337.
71 Urinary isoflavone excretion in Korean adults: comparisons of fermented soybean paste and
3.5

8
unfermented soy flour. Journal of the Science of Food and Agriculture, 2007, 87, 2112-2120.
Use of Amberlite Macroporous Resins To Reduce Bitterness in Whole Olives for Improved Processing
Sustainability. Journal of Agricultural and Food Chemistry, 2019, 67, 1546-1553.

Direct liquid chromatographyâ€"mass spectrometry method for the detection of glutathione
$74 \quad$ S-transferase isozymes and investigation of their expression in response to dietary flavone. Journal of
2.3

6
Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 809, 331-337.

$3.5 \quad 5$
0.3

5

88 Literature Review onÂthe Ergogenic Effects of Quercetin. , 2012, , 165-180.

Genderâ€•and isozymeâ€specific manner of glutathione Sâ€transferase induction. FASEB Journal, 2006, 20, A569. of Agricultural and Food Chemistry, 2021, 69, 13255-13259.

