Lionel Lp Pintard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7317611/publications.pdf

Version: 2024-02-01

218677 189892 3,009 52 26 50 citations g-index h-index papers 63 63 63 3766 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cortical microtubule pulling forces contribute to the union of the parental genomes in the Caenorhabditis elegans zygote. ELife, 2022, 11 , .	6.0	6
2	Cullin 3 Exon 9 Deletion in Familial Hyperkalemic Hypertension Impairs Cullin3-Ring-E3 Ligase (CRL3) Dynamic Regulation and Cycling. International Journal of Molecular Sciences, 2022, 23, 5151.	4.1	14
3	Bora phosphorylation substitutes in trans for T-loop phosphorylation in Aurora A to promote mitotic entry. Nature Communications, 2021, 12, 1899.	12.8	18
4	A survey of the kinome pharmacopeia reveals multiple scaffolds and targets for the development of novel anthelmintics. Scientific Reports, 2021, 11, 9161.	3.3	5
5	Aurora A kinase activation: Different means to different ends. Journal of Cell Biology, 2021, 220, .	5.2	19
6	Phosphorylation of the microtubule-severing AAA+ enzyme Katanin regulates <i>C. elegans</i> embryo development. Journal of Cell Biology, 2020, 219, .	5.2	10
7	PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly. ELife, 2020, 9, .	6.0	20
8	Mitotic Cell Division in <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 35-73.	2.9	63
9	PRP-19, a conserved pre-mRNA processing factor and E3 ubiquitin ligase, inhibits the nuclear accumulation of GLP-1/Notch intracellular domain. Biology Open, 2018, 7, .	1.2	8
10	A unified view of spatio-temporal control of mitotic entry: Polo kinase as the key. Open Biology, 2018, 8, .	3.6	32
11	Cyclin A-cdk1-Dependent Phosphorylation of Bora Is the Triggering Factor Promoting Mitotic Entry. Developmental Cell, 2018, 45, 637-650.e7.	7.0	79
12	Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C.Âelegans. Developmental Cell, 2017, 43, 157-171.e7.	7.0	75
13	A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization. Developmental Cell, 2017, 42, 416-434.e11.	7.0	139
14	Cdk1 Phosphorylates SPAT-1/Bora to Promote Plk1 Activation in C.Âelegans and Human Cells. Cell Reports, 2016, 15, 510-518.	6.4	45
15	Microtubule-severing activity of AAA-ATPase Katanin is essential for female meiotic spindle assembly. Development (Cambridge), 2016, 143, 3604-3614.	2.5	23
16	BORA-dependent PLK1 regulation: A new weapon for cancer therapy?. Molecular and Cellular Oncology, 2016, 3, e1199265.	0.7	5
17	Mitotic entry: The interplay between Cdk1, Plk1 and Bora. Cell Cycle, 2016, 15, 3177-3182.	2.6	29
18	RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3431-3442.	1.8	11

#	Article	IF	Citations
19	Microtubule-severing activity of AAA+ ATPase Katanin is essential for female meiotic spindle assembly. Journal of Cell Science, 2016, 129, e1.2-e1.2.	2.0	O
20	Cell cycle timing regulation during asynchronous divisions of the early C. elegans embryo. Experimental Cell Research, 2015, 337, 243-248.	2.6	10
21	Cdk1 plays matchmaker for the Polo-like kinase and its activator SPAT-1/Bora. Cell Cycle, 2015, 14, 2394-2398.	2.6	8
22	Cdk1 phosphorylates SPAT-1/Bora to trigger PLK-1 activation and drive mitotic entry in <i>C. elegans</i> embryos. Journal of Cell Biology, 2015, 208, 661-669.	5.2	50
23	PAR-4/LKB1 regulates DNA replication during asynchronous division of the early <i>C. elegans</i> embryo. Journal of Cell Biology, 2014, 205, 447-455.	5.2	26
24	Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1273-1278.	7.1	115
25	CRL2LRR-1 E3-Ligase Regulates Proliferation and Progression through Meiosis in the Caenorhabditis elegans Germline. PLoS Genetics, 2013, 9, e1003375.	3.5	35
26	Microtubule severing by the katanin complex is activated by PPFR-1–dependent MEI-1 dephosphorylation. Journal of Cell Biology, 2013, 202, 431-439.	5.2	20
27	Role of the CRL2LRR-1E3 ubiquitin-ligase in the development of the germline inC. elegans. Worm, 2013, 2, e25716.	1.0	2
28	Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms?. Open Biology, 2013, 3, 130083.	3.6	44
29	Control of the oocyte-to-embryo transition by the ubiquitin–proteolytic system in mouse and C. elegans. Current Opinion in Cell Biology, 2010, 22, 758-763.	5.4	28
30	The CRL2LRR-1 ubiquitin ligase regulates cell cycle progression during <i>C. elegans</i> development. Development (Cambridge), 2010, 137, 3857-3866.	2.5	31
31	The CRL2LRR-1 ubiquitin ligase regulates cell cycle progression during <i>C. elegans</i> development Journal of Cell Science, 2010, 123, e1-e1.	2.0	0
32	An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases. Journal of Cell Science, 2009, 122, 1035-1044.	2.0	74
33	The Role of Protein Phosphatase 4 in Regulating Microtubule Severing in the <i>Caenorhabditis elegans </i>	2.9	31
34	Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cellular and Molecular Life Sciences, 2009, 66, 1924-1938.	5.4	159
35	In the land of the rising sun with the COP9 signalosome and related Zomes. EMBO Reports, 2009, 10, 343-348.	4.5	17
36	The AAA-ATPase FIGL-1 controls mitotic progression, and its levels are regulated by the CUL-3MEL-26 E3 ligase in the <i>C. elegans</i> germ line. Journal of Cell Science, 2007, 120, 3179-3187.	2.0	32

#	Article	IF	CITATIONS
37	CIF-1, a Shared Subunit of the COP9/Signalosome and Eukaryotic Initiation Factor 3 Complexes, Regulates MEL-26 Levels in the Caenorhabditis elegans Embryo. Molecular and Cellular Biology, 2007, 27, 4526-4540.	2.3	48
38	The Cullin Rtt101p Promotes Replication Fork Progression through Damaged DNA and Natural Pause Sites. Current Biology, 2006, 16, 786-792.	3.9	89
39	Cullin-based ubiquitin ligases: Cul3–BTB complexes join the family. EMBO Journal, 2005, 24, 1092-1092.	7.8	1
40	The BTB Protein MEL-26 Promotes Cytokinesis in C. elegans by a CUL-3-Independent Mechanism. Current Biology, 2005, 15, 1605-1615.	3.9	27
41	Cullin-based ubiquitin ligases: Cul3–BTB complexes join the family. EMBO Journal, 2004, 23, 1681-1687.	7.8	350
42	Neddylation and Deneddylation of CUL-3 Is Required to Target MEI-1/Katanin for Degradation at the Meiosis-to-Mitosis Transition in C. elegans. Current Biology, 2003, 13, 911-921.	3.9	157
43	The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature, 2003, 425, 311-316.	27.8	378
44	Cdc34: cycling on and off the SCF. Nature Cell Biology, 2003, 5, 856-857.	10.3	7
45	Functional Redundancy of Spb1p and a snR52-Dependent Mechanism for the 2′-O-Ribose Methylation of a Conserved rRNA Position in Yeast. Molecular Cell, 2003, 12, 1309-1315.	9.7	50
46	mRNA Decay Is Rapidly Induced after Spore Germination of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 40505-40512.	3.4	28
47	Cytoskeletal Regulation by the Nedd8 Ubiquitin-Like Protein Modification Pathway. Science, 2002, 295, 1294-1298.	12.6	180
48	MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. EMBO Journal, 2002, 21, 1139-1147.	7.8	73
49	Trm7p catalyses the formation of two 2'-O-methylriboses in yeast tRNA anticodon loop. EMBO Journal, 2002, 21, 1811-1820.	7.8	154
50	Mitotic Exit. Molecular Cell, 2001, 8, 1155-1156.	9.7	2
51	Spb1p Is a Yeast Nucleolar Protein Associated with Nop1p and Nop58p That Is Able To Bind S -Adenosyl- I -Methionine In Vitro. Molecular and Cellular Biology, 2000, 20, 1370-1381.	2.3	58
52	Molecular Cloning of a New Interferon-induced PML Nuclear Body-associated Protein. Journal of Biological Chemistry, 1997, 272, 19457-19463.	3.4	124