Chaitan Khosla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/731750/publications.pdf Version: 2024-02-01

<u> <u>Chaitan</u> Khosia</u>

#	Article	IF	CITATIONS
1	Fragment antigen binding domains (Fabs) as tools to study assembly-line polyketide synthases. Synthetic and Systems Biotechnology, 2022, 7, 506-512.	1.8	3
2	Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Science Translational Medicine, 2022, 14, eabm7853.	5.8	71
3	An efficient urine peptidomics workflow identifies chemically defined dietary gluten peptides from patients with celiac disease. Nature Communications, 2022, 13, 888.	5.8	16
4	KIR ⁺ CD8 ⁺ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science, 2022, 376, eabi9591.	6.0	113
5	Engineering site-selective incorporation of fluorine into polyketides. Nature Chemical Biology, 2022, 18, 886-893.	3.9	23
6	50 Years Ago in T J P. Journal of Pediatrics, 2021, 230, 70.	0.9	2
7	Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nature Communications, 2021, 12, 1967.	5.8	107
8	Properties of a "Split-and-Stuttering―Module of an Assembly Line Polyketide Synthase. Journal of Organic Chemistry, 2021, 86, 11100-11106.	1.7	4
9	SARS-CoV-2 Subgenomic RNA Kinetics in Longitudinal Clinical Samples. Open Forum Infectious Diseases, 2021, 8, ofab310.	0.4	24
10	GRINS: Genetic elements that recode assembly-line polyketide synthases and accelerate their diversification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
11	An Unusual "OR―Gate for Allosteric Regulation of Mammalian Transglutaminase 2 in the Extracellular Matrix. Journal of the American Chemical Society, 2021, 143, 10537-10540.	6.6	3
12	The COVID-19 Outpatient Pragmatic Platform Study (COPPS): Study design of a multi-center pragmatic platform trial. Contemporary Clinical Trials, 2021, 108, 106509.	0.8	5
13	Solution Structure and Conformational Flexibility of a Polyketide Synthase Module. Jacs Au, 2021, 1, 2162-2171.	3.6	14
14	Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science, 2021, 374, 729-734.	6.0	41
15	Prospects for Antibacterial Discovery and Development. Journal of the American Chemical Society, 2021, 143, 21127-21142.	6.6	51
16	Challenges and opportunities for engineering assembly-line polyketide biosynthesis in Escherichia coli. Metabolic Engineering Communications, 2020, 10, e00106.	1.9	3
17	A genome-wide analysis of targets of macrolide antibiotics in mammalian cells. Journal of Biological Chemistry, 2020, 295, 2057-2067.	1.6	10
18	Substrates, inhibitors, and probes of mammalian transglutaminase 2. Analytical Biochemistry, 2020, 591, 113560.	1.1	24

#	Article	IF	CITATIONS
19	Antibody Probes of Module 1 of the 6-Deoxyerythronolide B Synthase Reveal an Extended Conformation During Ketoreduction. Journal of the American Chemical Society, 2020, 142, 14933-14939.	6.6	8
20	Structure and Mechanism of the Ketosynthase-Chain Length Factor Didomain from a Prototypical Polyunsaturated Fatty Acid Synthase. Biochemistry, 2020, 59, 4735-4743.	1.2	2
21	Complete Reconstitution and Deorphanization of the 3 MDa Nocardiosis-Associated Polyketide Synthase. Journal of the American Chemical Society, 2020, 142, 5952-5957.	6.6	27
22	Enhancing the Antiviral Efficacy of RNA-Dependent RNA Polymerase Inhibition by Combination with Modulators of Pyrimidine Metabolism. Cell Chemical Biology, 2020, 27, 668-677.e9.	2.5	23
23	IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature, 2020, 578, 600-604.	13.7	122
24	Characterization of Natural Product Biosynthetic Pathways by In Vitro Reconstitution. , 2020, , 307-317.		1
25	Latiglutenase treatment for celiac disease: symptom and quality of life improvement for seropositive patients on a glutenâ€free diet. GastroHep, 2019, 1, 293-301.	0.3	24
26	Discovery of small molecule inhibitors of human uridine-cytidine kinase 2 by high-throughput screening. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2559-2564.	1.0	14
27	Engineering of Chimeric Polyketide Synthases Using SYNZIP Docking Domains. ACS Chemical Biology, 2019, 14, 426-433.	1.6	31
28	Tunable Enzymatic Synthesis of the Immunomodulator Lipid IV _A To Enable Structure–Activity Analysis. Journal of the American Chemical Society, 2019, 141, 9474-9478.	6.6	5
29	In Vivo Measurement of Redox-Regulated TG2 Activity. Methods in Molecular Biology, 2019, 1967, 263-274.	0.4	2
30	Evolution and Diversity of Assembly-Line Polyketide Synthases. Chemical Reviews, 2019, 119, 12524-12547.	23.0	178
31	From Active Sites to Machines: A Challenge for Enzyme Chemists. Israel Journal of Chemistry, 2019, 59, 37-40.	1.0	3
32	HEx: A heterologous expression platform for the discovery of fungal natural products. Science Advances, 2018, 4, eaar5459.	4.7	167
33	Endoplasmic reticulum–resident protein 57 (ERp57) oxidatively inactivates human transglutaminase 2. Journal of Biological Chemistry, 2018, 293, 2640-2649.	1.6	33
34	Cystamine and Disulfiram Inhibit Human Transglutaminase 2 via an Oxidative Mechanism. Biochemistry, 2018, 57, 3359-3363.	1.2	27
35	Discovery and Characterization of a Thioesterase-Specific Monoclonal Antibody That Recognizes the 6-Deoxyerythronolide B Synthase. Biochemistry, 2018, 57, 6201-6208.	1.2	7
36	A tribute to Professor Jay Bailey: A pioneer in biochemical engineering. AICHE Journal, 2018, 64, 4179-4181.	1.8	1

#	Article	IF	CITATIONS
37	A Tribute to James E. Bailey. AICHE Journal, 2018, 64, 4178-4178.	1.8	0
38	Structure–Function Analysis of the Extended Conformation of a Polyketide Synthase Module. Journal of the American Chemical Society, 2018, 140, 6518-6521.	6.6	37
39	Interleukin 4 is inactivated via selective disulfide-bond reduction by extracellular thioredoxin. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8781-8786.	3.3	20
40	Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis. Journal of the American Chemical Society, 2017, 139, 3283-3292.	6.6	18
41	Celiac Disease: Lessons for and from Chemical Biology. ACS Chemical Biology, 2017, 12, 1455-1459.	1.6	8
42	Elucidation of the Stereospecificity of <i>C</i> -Methyltransferases from <i>trans</i> -AT Polyketide Synthases. Journal of the American Chemical Society, 2017, 139, 6102-6105.	6.6	19
43	Heterologous expression of diverse propionyl-CoA carboxylases affects polyketide production in Escherichia coli. Journal of Antibiotics, 2017, 70, 859-863.	1.0	8
44	Human pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy. Current Opinion in Biotechnology, 2017, 48, 127-134.	3.3	64
45	Real-Time <i>in Vivo</i> Detection of H ₂ O ₂ Using Hyperpolarized ¹³ C-Thiourea. ACS Chemical Biology, 2017, 12, 1737-1742.	1.6	20
46	A B-Cell Gene Signature Correlates With the Extent of Gluten-Induced Intestinal Injury in Celiac Disease. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 1-17.	2.3	13
47	Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science, 2017, 356, 44-50.	6.0	367
48	Thioredoxin-1 Selectively Activates Transglutaminase 2 in the Extracellular Matrix of the Small Intestine. Journal of Biological Chemistry, 2017, 292, 2000-2008.	1.6	35
49	Genetic Mapping and Biochemical Basis of Yellow Feather Pigmentation in Budgerigars. Cell, 2017, 171, 427-439.e21.	13.5	101
50	Biosynthesis and structure–activity relationships of the lipid a family of glycolipids. Current Opinion in Chemical Biology, 2017, 40, 127-137.	2.8	22
51	The Conformational Flexibility of the Acyltransferase from the Disorazole Polyketide Synthase Is Revealed by an X-ray Free-Electron Laser Using a Room-Temperature Sample Delivery Method for Serial Crystallography. Biochemistry, 2017, 56, 4751-4756.	1.2	20
52	Latiglutenase Improves Symptoms in Seropositive Celiac Disease Patients While on a Gluten-Free Diet. Digestive Diseases and Sciences, 2017, 62, 2428-2432.	1.1	58
53	Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L752-L762.	1.3	40
54	Elucidation of the Cryptic Methyl Group Epimerase Activity of Dehydratase Domains from Modular Polyketide Synthases Using a Tandem Modules Epimerase Assay. Journal of the American Chemical Society, 2017, 139, 9507-9510.	6.6	18

#	Article	IF	CITATIONS
55	Intracellular TG2 Activity Increases Microtubule Stability but is not Sufficient to Prompt Neurite Growth. Neuroscience Bulletin, 2017, 33, 103-106.	1.5	2
56	Cholestyramine as a promising, strong anion exchange resin for direct capture of genetic biomarkers from raw pancreatic fluids. Biotechnology and Bioengineering, 2017, 114, 934-938.	1.7	3
57	Partial <i>In Vitro</i> Reconstitution of an Orphan Polyketide Synthase Associated with Clinical Cases of Nocardiosis. ACS Chemical Biology, 2016, 11, 2636-2641.	1.6	24
58	A Turnstile Mechanism for the Controlled Growth of Biosynthetic Intermediates on Assembly Line Polyketide Synthases. ACS Central Science, 2016, 2, 14-20.	5.3	51
59	Thiol–Disulfide Exchange Reactions in the Mammalian Extracellular Environment. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 197-222.	3.3	59
60	Recognition of acyl carrier proteins by ketoreductases in assembly line polyketide synthases. Journal of Antibiotics, 2016, 69, 507-510.	1.0	15
61	Protein-Protein Interactions, Not Substrate Recognition, Dominate the Turnover of Chimeric Assembly Line Polyketide Synthases. Journal of Biological Chemistry, 2016, 291, 16404-16415.	1.6	55
62	Roles of Conserved Active Site Residues in the Ketosynthase Domain of an Assembly Line Polyketide Synthase. Biochemistry, 2016, 55, 4476-4484.	1.2	50
63	Structure and mechanism of assembly line polyketide synthases. Current Opinion in Structural Biology, 2016, 41, 10-18.	2.6	104
64	Editorial overview: Next-generation therapeutics: Breaking new ground and making a difference for patients. Current Opinion in Chemical Biology, 2016, 32, 58-59.	2.8	0
65	Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nature Chemical Biology, 2016, 12, 361-366.	3.9	157
66	Epimerase and Reductase Activities of Polyketide Synthase Ketoreductase Domains Utilize the Same Conserved Tyrosine and Serine Residues. Biochemistry, 2016, 55, 1179-1186.	1.2	23
67	Gluten Introduction, Breastfeeding, and Celiac Disease: Back to the Drawing Board. American Journal of Gastroenterology, 2016, 111, 12-14.	0.2	29
68	An unprecedented dual antagonist and agonist of human Transglutaminase 2. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4922-4926.	1.0	9
69	Quo vadis, enzymology?. Nature Chemical Biology, 2015, 11, 438-441.	3.9	13
70	In Vitro Reconstitution of Metabolic Pathways: Insights into Nature's Chemical Logic. Synlett, 2015, 26, 1008-1025.	1.0	26
71	Therapeutic approaches for celiac disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2015, 29, 503-521.	1.0	43
72	Computational identification and analysis of orphan assembly-line polyketide synthases. Journal of Antibiotics, 2014, 67, 89-97.	1.0	59

#	Article	IF	CITATIONS
73	The Convergence of Chemistry & amp; Human Biology. Daedalus, 2014, 143, 43-48.	0.9	2
74	The initiation ketosynthase (FabH) is the sole rate-limiting enzyme of the fatty acid synthase of Synechococcus sp. PCC 7002. Metabolic Engineering, 2014, 22, 53-59.	3.6	28
75	Elevated Transglutaminase 2 Activity Is Associated with Hypoxia-Induced Experimental Pulmonary Hypertension in Mice. ACS Chemical Biology, 2014, 9, 266-275.	1.6	57
76	Discovery of Potent and Specific Dihydroisoxazole Inhibitors of Human Transglutaminase 2. Journal of Medicinal Chemistry, 2014, 57, 9042-9064.	2.9	45
77	Role of hypoxia-induced transglutaminase 2 in pulmonary artery smooth muscle cell proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L576-L585.	1.3	40
78	Elucidation of the Cryptic Epimerase Activity of Redox-Inactive Ketoreductase Domains from Modular Polyketide Synthases by Tandem Equilibrium Isotope Exchange. Journal of the American Chemical Society, 2014, 136, 10190-10193.	6.6	28
79	Dihydroisoxazole inhibitors of Anopheles gambiae seminal transglutaminase AgTG3. Malaria Journal, 2014, 13, 210.	0.8	10
80	Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Applied Microbiology and Biotechnology, 2014, 98, 6689-6700.	1.7	21
81	Assembly Line Polyketide Synthases: Mechanistic Insights and Unsolved Problems. Biochemistry, 2014, 53, 2875-2883.	1.2	114
82	Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8470-8475.	3.3	51
83	Architectures of Whole-Module and Bimodular Proteins from the 6-Deoxyerythronolide B Synthase. Journal of Molecular Biology, 2014, 426, 2229-2245.	2.0	60
84	Comparative Analysis of the Substrate Specificity of <i>trans</i> - versus <i>cis-</i> Acyltransferases of Assembly Line Polyketide Synthases. Biochemistry, 2014, 53, 3796-3806.	1.2	45
85	CYP3A4-Catalyzed Simvastatin Metabolism as a Non-Invasive Marker of Small Intestinal Health in Celiac Disease. American Journal of Gastroenterology, 2013, 108, 1344-1351.	0.2	36
86	Analysis and Refactoring of the A-74528 Biosynthetic Pathway. Journal of the American Chemical Society, 2013, 135, 3752-3755.	6.6	8
87	Expanding the Fluorine Chemistry of Living Systems Using Engineered Polyketide Synthase Pathways. Science, 2013, 341, 1089-1094.	6.0	166
88	Coupled Methyl Group Epimerization and Reduction by Polyketide Synthase Ketoreductase Domains. Ketoreductase-Catalyzed Equilibrium Isotope Exchange. Journal of the American Chemical Society, 2013, 135, 16324-16327.	6.6	31
89	<i>In Vitro</i> Reconstitution and Analysis of the 6-Deoxyerythronolide B Synthase. Journal of the American Chemical Society, 2013, 135, 16809-16812.	6.6	70
90	Gluten-sensitive enteropathy coincides with decreased capability of intestinal T cells to secrete IL-17 and IL-22 in a macaque model for celiac disease. Clinical Immunology, 2013, 147, 40-49.	1.4	24

#	Article	IF	CITATIONS
91	Selective Inhibition of Extracellular Thioredoxin by Asymmetric Disulfides. Journal of Medicinal Chemistry, 2013, 56, 1301-1310.	2.9	49
92	Mechanism and Specificity of an Acyltransferase Domain from a Modular Polyketide Synthase. Biochemistry, 2013, 52, 1839-1841.	1.2	62
93	Stereochemistry of Reductions Catalyzed by Methyl-Epimerizing Ketoreductase Domains of Polyketide Synthases. Journal of the American Chemical Society, 2013, 135, 7406-7409.	6.6	26
94	Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angewandte Chemie - International Edition, 2013, 52, 7098-7124.	7.2	314
95	Metabolic Flux between Unsaturated and Saturated Fatty Acids Is Controlled by the FabA:FabB Ratio in the Fully Reconstituted Fatty Acid Biosynthetic Pathway ofEscherichia coli. Biochemistry, 2013, 52, 8304-8312.	1.2	23
96	The Stanford Institute for Chemical Biology. ACS Chemical Biology, 2013, 8, 1860-1861.	1.6	0
97	Dietary gluten triggers concomitant activation of CD4 ⁺ and CD8 ⁺ αβ T cells and γÎ′ T cells in celiac disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13073-13078.	3.3	178
98	Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. Journal of the Royal Society Interface, 2013, 10, 20130297.	1.5	99
99	Discovery and Mechanism of Typeâ€III Secretion System Inhibitors. Israel Journal of Chemistry, 2013, 53, 577-587.	1.0	4
100	Interferon-Î ³ Activates Transglutaminase 2 via a Phosphatidylinositol-3-Kinase-Dependent Pathway: Implications for Celiac Sprue Therapy. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 104-114.	1.3	30
101	Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4110-4115.	3.3	97
102	Engineering Escherichia coli for Biotransformation of Biomass into Fatty Acid Derived Fuels. Current Chemical Biology, 2012, 6, 7-13.	0.2	0
103	Regulation of the activities of the mammalian transglutaminase family of enzymes. Protein Science, 2012, 21, 1781-1791.	3.1	47
104	Role of transglutaminase 2 in celiac disease pathogenesis. Seminars in Immunopathology, 2012, 34, 513-522.	2.8	71
105	Molecular Insights into the Biosynthesis of Guadinomine: A Type III Secretion System Inhibitor. Journal of the American Chemical Society, 2012, 134, 17797-17806.	6.6	72
106	Role of a Conserved Arginine Residue in Linkers between the Ketosynthase and Acyltransferase Domains of Multimodular Polyketide Synthases. Biochemistry, 2012, 51, 3708-3710.	1.2	25
107	Oral Enzyme Therapy for Celiac Sprue. Methods in Enzymology, 2012, 502, 241-271.	0.4	72
108	Precursor Directed Biosynthesis of an Orthogonally Functional Erythromycin Analogue: Selectivity in the Ribosome Macrolide Binding Pocket. Journal of the American Chemical Society, 2012, 134, 12259-12265.	6.6	53

#	Article	IF	CITATIONS
109	Activation and Inhibition of Transglutaminase 2 in Mice. PLoS ONE, 2012, 7, e30642.	1.1	58
110	Engineering Escherichia coli for Biotransformation of Biomass into Fatty Acid Derived Fuels. Current Chemical Biology, 2012, 6, 7-13.	0.2	1
111	Natural product inhibitors of glucose-6-phosphate translocase. MedChemComm, 2012, 3, 926.	3.5	17
112	Resolving Multiple Protein–Peptide Binding Events: Implication for HLAâ€DQ2 Mediated Antigen Presentation in Celiac Disease. Chemistry - an Asian Journal, 2012, 7, 992-999.	1.7	8
113	Combinatorial biosynthesis of polyketides—a perspective. Current Opinion in Chemical Biology, 2012, 16, 117-123.	2.8	126
114	Activation of Extracellular Transglutaminase 2 by Thioredoxin. Journal of Biological Chemistry, 2011, 286, 37866-37873.	1.6	95
115	Structure and Mechanism of the <i>trans</i> -Acting Acyltransferase from the Disorazole Synthase. Biochemistry, 2011, 50, 6539-6548.	1.2	78
116	Chemistry and Biology of Macrolide Antiparasitic Agents. Journal of Medicinal Chemistry, 2011, 54, 2792-2804.	2.9	30
117	Engineered biosynthesis of the antiparasitic agent frenolicin B and rationally designed analogs in a heterologous host. Journal of Antibiotics, 2011, 64, 759-762.	1.0	16
118	In vitro and in vivo activity of frenolicin B against Plasmodium falciparum and P berghei. Journal of Antibiotics, 2011, 64, 799-801.	1.0	10
119	Novel therapies for coeliac disease. Journal of Internal Medicine, 2011, 269, 604-613.	2.7	101
120	Improved precursor-directed biosynthesis in E. coli via directed evolution. Journal of Antibiotics, 2011, 64, 59-64.	1.0	19
121	Analysis of the Ketosynthase-Chain Length Factor Heterodimer from the Fredericamycin Polyketide Synthase. Chemistry and Biology, 2011, 18, 1021-1031.	6.2	16
122	Novel chemo-sensitizing agent, ERW1227B, impairs cellular motility and enhances cell death in glioblastomas. Journal of Neuro-Oncology, 2011, 103, 207-219.	1.4	15
123	Probing the interactions of an acyl carrier protein domain from the 6â€deoxyerythronolide B synthase. Protein Science, 2011, 20, 1244-1255.	3.1	50
124	Dihydroisoxazole Analogs for Labeling andÂVisualization of Catalytically Active Transglutaminase 2. Chemistry and Biology, 2011, 18, 58-66.	6.2	22
125	Acylideneoxoindoles: A new class of reversible inhibitors of human transglutaminase 2. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2692-2696.	1.0	58
126	In vitro reconstitution and steady-state analysis of the fatty acid synthase from <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18643-18648.	3.3	152

#	Article	IF	CITATIONS
127	Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chromatography–mass spectrometry. Journal of Chromatography A, 2010, 1217, 4167-4183.	1.8	91
128	Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metabolic Engineering, 2010, 12, 378-386.	3.6	198
129	Inhibition of Tubulogenesis and of Carcinogenâ€mediated Signaling in Brain Endothelial Cells Highlight the Antiangiogenic Properties of a Mumbaistatin Analog. Chemical Biology and Drug Design, 2010, 75, 481-488.	1.5	14
130	Characterization of transglutaminase type II role in dendritic cell differentiation and function. Journal of Leukocyte Biology, 2010, 88, 181-188.	1.5	29
131	Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22066-22071.	3.3	81
132	Thematic Minireview Series on Antibacterial Natural Products: New Tricks for Old Dogs. Journal of Biological Chemistry, 2010, 285, 27499.	1.6	1
133	In Living Color: Bacterial Pigments as an Untapped Resource in the Classroom and Beyond. PLoS Biology, 2010, 8, e1000510.	2.6	26
134	Proteinâ^'Protein Recognition between Acyltransferases and Acyl Carrier Proteins in Multimodular Polyketide Synthases. Biochemistry, 2010, 49, 95-102.	1.2	52
135	Stereospecificity of the Dehydratase Domain of the Erythromycin Polyketide Synthase. Journal of the American Chemical Society, 2010, 132, 14697-14699.	6.6	64
136	Redox Regulation of Transglutaminase 2 Activity. Journal of Biological Chemistry, 2010, 285, 25402-25409.	1.6	155
137	Genetic Engineering of <i>Escherichia coli</i> for Biofuel Production. Annual Review of Genetics, 2010, 44, 53-69.	3.2	119
138	A Balancing Act for Taxol Precursor Pathways in <i>E. coli</i> . Science, 2010, 330, 44-45.	6.0	17
139	Cloning, Sequencing, Heterologous Expression, and Mechanistic Analysis of A-74528 Biosynthesis. Journal of the American Chemical Society, 2010, 132, 9122-9128.	6.6	20
140	Mechanism and Engineering of Polyketide Chain Initiation in Fredericamycin Biosynthesis. Journal of the American Chemical Society, 2010, 132, 8831-8833.	6.6	18
141	Visualization of Transepithelial Passage of the Immunogenic 33-Residue Peptide from α-2 Gliadin in Gluten-Sensitive Macaques. PLoS ONE, 2010, 5, e10228.	1.1	37
142	Interferon-Î ³ Released by Gluten-Stimulated Celiac Disease-Specific Intestinal T Cells Enhances the Transepithelial Flux of Gluten Peptides. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 657-668.	1.3	37
143	Modular biocatalysts. AICHE Journal, 2009, 55, 1926-1929.	1.8	1
144	Revisiting the modularity of modular polyketide synthases. Current Opinion in Chemical Biology, 2009, 13, 135-143.	2.8	83

#	Article	IF	CITATIONS
145	Noninflammatory Gluten Peptide Analogs as Biomarkers for Celiac Sprue. Chemistry and Biology, 2009, 16, 868-881.	6.2	13
146	In Vivo and In Vitro Analysis of the Hedamycin Polyketide Synthase. Chemistry and Biology, 2009, 16, 1197-1207.	6.2	26
147	A Food-Grade Enzyme Preparation with Modest Gluten Detoxification Properties. PLoS ONE, 2009, 4, e6313.	1.1	84
148	Structures and Mechanisms of Polyketide Synthases. Journal of Organic Chemistry, 2009, 74, 6416-6420.	1.7	88
149	Biosynthesis of Aromatic Polyketides in Bacteria. Accounts of Chemical Research, 2009, 42, 631-639.	7.6	170
150	Evidence for Transcriptional Regulation of the Glucose-6-Phosphate Transporter by HIF-1 <i>α</i> : Targeting G6PT with Mumbaistatin Analogs in Hypoxic Mesenchymal Stromal Cells. Stem Cells, 2009, 27, 489-497.	1.4	47
151	The Biochemical Basis for Stereochemical Control in Polyketide Biosynthesis. Journal of the American Chemical Society, 2009, 131, 18501-18511.	6.6	79
152	The Diversity of Nuclear Magnetic Resonance Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 65-81.	0.2	0
153	Tissue transgluaminase 2 expression in meningiomas. Journal of Neuro-Oncology, 2008, 90, 125-132.	1.4	19
154	Mechanism based protein crosslinking of domains from the 6-deoxyerythronolide B synthase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3034-3038.	1.0	28
155	Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metabolic Engineering, 2008, 10, 333-339.	3.6	341
156	Fit for an enzyme. Nature, 2008, 454, 832-833.	13.7	8
157	Stereospecificity of Ketoreductase Domains 1 and 2 of the Tylactone Modular Polyketide Synthase. Journal of the American Chemical Society, 2008, 130, 11598-11599.	6.6	43
158	Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Engineering, Design and Selection, 2008, 21, 699-707.	1.0	80
159	Evolution of polyketide synthases in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4595-4600.	3.3	163
160	Parallels between Pathogens and Gluten Peptides in Celiac Sprue. PLoS Pathogens, 2008, 4, e34.	2.1	51
161	A Non-Human Primate Model for Gluten Sensitivity. PLoS ONE, 2008, 3, e1614.	1.1	76
162	Extracellular Transglutaminase 2 Is Catalytically Inactive, but Is Transiently Activated upon Tissue Injury. PLoS ONE, 2008, 3, e1861.	1.1	174

#	Article	IF	CITATIONS
163	Toward the Assessment of Food Toxicity for Celiac Patients: Characterization of Monoclonal Antibodies to a Main Immunogenic Gluten Peptide. PLoS ONE, 2008, 3, e2294.	1.1	141
164	Transepithelial Transport and Enzymatic Detoxification of Gluten in Gluten-Sensitive Rhesus Macaques. PLoS ONE, 2008, 3, e1857.	1.1	37
165	Transglutaminase 2 Undergoes a Large Conformational Change upon Activation. PLoS Biology, 2007, 5, e327.	2.6	369
166	Bioassay-Guided Evolution of Glycosylated Macrolide Antibiotics in Escherichia coli. PLoS Biology, 2007, 5, e45.	2.6	36
167	Stereospecificity of Ketoreductase Domains of the 6-Deoxyerythronolide B Synthase. Journal of the American Chemical Society, 2007, 129, 13758-13769.	6.6	81
168	Structure and Mechanism of the 6-Deoxyerythronolide B Synthase. Annual Review of Biochemistry, 2007, 76, 195-221.	5.0	282
169	Transglutaminase 2 Regulates Mallory Body Inclusion Formation and Injury-Associated Liver Enlargement. Gastroenterology, 2007, 132, 1515-1526.	0.6	66
170	Combination Enzyme Therapy for Gastric Digestion of Dietary Gluten in Patients With Celiac Sprue. Gastroenterology, 2007, 133, 472-480.	0.6	205
171	A scaleable manufacturing process for pro-EP-B2, a cysteine protease from barley indicated for celiac sprue. Biotechnology and Bioengineering, 2007, 98, 177-185.	1.7	22
172	Structure–activity relationships of semisynthetic mumbaistatin analogs. Bioorganic and Medicinal Chemistry, 2007, 15, 5207-5218.	1.4	15
173	Structure-based design of $\hat{l}\pm$ -amido aldehyde containing gluten peptide analogues as modulators of HLA-DQ2 and transglutaminase 2. Bioorganic and Medicinal Chemistry, 2007, 15, 6253-6261.	1.4	41
174	Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Bioorganic and Medicinal Chemistry, 2007, 15, 6565-6573.	1.4	85
175	Structure-Based Dissociation of a Type I Polyketide Synthase Module. Chemistry and Biology, 2007, 14, 784-792.	6.2	72
176	Structural and Mechanistic Analysis of Protein Interactions in Module 3 of the 6-Deoxyerythronolide B Synthase. Chemistry and Biology, 2007, 14, 931-943.	6.2	151
177	Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene, 2007, 26, 2563-2573.	2.6	156
178	Antibiotic production from the ground up. Nature Biotechnology, 2007, 25, 428-429.	9.4	19
179	Transglutaminase 2 inhibitors and their therapeutic role in disease states. , 2007, 115, 232-245.		170
180	Synthesis and Biological Activity of Novel Pyranopyrones Derived from Engineered Aromatic Polyketides. ACS Chemical Biology, 2007, 2, 104-108.	1.6	15

#	Article	IF	CITATIONS
181	Solution structure and proposed domain–domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase. Protein Science, 2007, 16, 2093-2107.	3.1	107
182	Prolyl endopeptidases. Cellular and Molecular Life Sciences, 2007, 64, 345-355.	2.4	121
183	Extender Unit and Acyl Carrier Protein Specificity of Ketosynthase Domains of the 6-Deoxyerythronolide B Synthase. Journal of the American Chemical Society, 2006, 128, 3067-3074.	6.6	94
184	Trapping Transient Protein–Protein Interactions in Polyketide Biosynthesis. ACS Chemical Biology, 2006, 1, 679-680.	1.6	5
185	Inhibition of HLA-DQ2-Mediated Antigen Presentation by Analogues of a High Affinity 33-Residue Peptide from α2-Gliadin. Journal of the American Chemical Society, 2006, 128, 1859-1867.	6.6	73
186	Pharmacologic transglutaminase inhibition attenuates drug-primed liver hypertrophy but not Mallory body formation. FEBS Letters, 2006, 580, 2351-2357.	1.3	14
187	Structureâ^'Activity Relationship Analysis of the Selective Inhibition of Transglutaminase 2 by Dihydroisoxazoles. Journal of Medicinal Chemistry, 2006, 49, 7493-7501.	2.9	78
188	Modular polyketide synthases: Investigating intermodular communication using 6 deoxyerythronolide B synthase module 2. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 213-216.	1.0	4
189	Heterologous Expression, Purification, Refolding, and Structural-Functional Characterization of EP-B2, a Self-Activating Barley Cysteine Endoprotease. Chemistry and Biology, 2006, 13, 637-647.	6.2	104
190	Rational Design of Combination Enzyme Therapy for Celiac Sprue. Chemistry and Biology, 2006, 13, 649-658.	6.2	117
191	Macrolactonization to 10-deoxymethynolide catalyzed by the recombinant thioesterase of the picromycin/methymycin polyketide synthase. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 391-394.	1.0	34
192	Investigating Nonribosomal Peptide and Polyketide Biosynthesis by Direct Detection of Intermediates on >70 kDa Polypeptides by Using Fourier-Transform Mass Spectrometry. ChemBioChem, 2006, 7, 904-907.	1.3	21
193	The 2.7-A crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11124-11129.	3.3	259
194	Effect of Barley Endoprotease EP-B2 on Gluten Digestion in the Intact Rat. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1178-1186.	1.3	65
195	Structure, Mechanism and Engineering of Polyketide Synthases. FASEB Journal, 2006, 20, A1472.	0.2	0
196	Chemistry and Biology of Dihydroisoxazole Derivatives: Selective Inhibitors of Human Transglutaminase 2. Chemistry and Biology, 2005, 12, 469-475.	6.2	154
197	Orthogonal Protein Interactions in Spore Pigment Producing and Antibiotic Producing Polyketide Synthases. Journal of Antibiotics, 2005, 58, 663-666.	1.0	8
100	lust add chloring Noture 2005 426 1004 1005	10.7	

198 Just add chlorine. Nature, 2005, 436, 1094-1095.

13.7 4

#	Article	IF	CITATIONS
199	Chain Elongation, Macrolactonization, and Hydrolysis of Natural and Reduced Hexaketide Substrates by the Picromycin/Methymycin Polyketide Synthase. Angewandte Chemie - International Edition, 2005, 44, 7557-7560.	7.2	11
200	Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase fromMyxococcus xanthus: Implications for Celiac Sprue therapy. Biotechnology and Bioengineering, 2005, 92, 674-684.	1.7	70
201	A New Route to Designer Antibiotics. ChemInform, 2005, 36, no.	0.1	Ο
202	Structural and mechanistic analysis of two prolyl endopeptidases: Role of interdomain dynamics in catalysis and specificity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3599-3604.	3.3	133
203	Tissue Transglutaminase-Mediated Formation and Cleavage of Histamine-Gliadin Complexes: Biological Effects and Implications for Celiac Disease. Journal of Immunology, 2005, 174, 1657-1663.	0.4	38
204	Future therapeutic options for celiac disease. Nature Reviews Gastroenterology & Hepatology, 2005, 2, 140-147.	1.7	137
205	Main Chain Hydrogen Bond Interactions in the Binding of Proline-rich Gluten Peptides to the Celiac Disease-associated HLA-DQ2 Molecule. Journal of Biological Chemistry, 2005, 280, 21791-21796.	1.6	32
206	Tissue transglutaminase 2 inhibition promotes cell death and chemosensitivity in glioblastomas. Molecular Cancer Therapeutics, 2005, 4, 1293-1302.	1.9	82
207	Prolyl Endopeptidase-Mediated Destruction of T Cell Epitopes in Whole Gluten: Chemical and Immunological Characterization. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 19-26.	1.3	123
208	Engineered Biosynthesis of Aklanonic Acid Analogues. Journal of the American Chemical Society, 2005, 127, 12254-12262.	6.6	36
209	Stereochemical Assignment of Intermediates in the Rifamycin Biosynthetic Pathway by Precursor-Directed Biosynthesis. Journal of the American Chemical Society, 2005, 127, 11202-11203.	6.6	11
210	Analysis of Covalently Bound Polyketide Intermediates on 6-Deoxyerythronolide B Synthase by Tandem Proteolysisâ ^{~'} Mass Spectrometry. Biochemistry, 2005, 44, 11836-11842.	1.2	30
211	Identification and Analysis of Multivalent Proteolytically Resistant Peptides from Gluten:Â Implications for Celiac Sprue. Journal of Proteome Research, 2005, 4, 1732-1741.	1.8	239
212	Equilibrium and Kinetic Analysis of the Unusual Binding Behavior of a Highly Immunogenic Gluten Peptide to HLA-DQ2â€. Biochemistry, 2005, 44, 4442-4449.	1.2	45
213	Polyketide Double Bond Biosynthesis. Mechanistic Analysis of the Dehydratase-Containing Module 2 of the Picromycin/Methymycin Polyketide Synthase. Journal of the American Chemical Society, 2005, 127, 17393-17404.	6.6	71
214	Effect of Pretreatment of Food Gluten With Prolyl Endopeptidase on Gluten-Induced Malabsorption in Celiac Sprue. Clinical Gastroenterology and Hepatology, 2005, 3, 687-694.	2.4	93
215	Low-Dose Gluten Challenge in Celiac Sprue: Malabsorptive and Antibody Responses. Clinical Gastroenterology and Hepatology, 2005, 3, 679-686.	2.4	24
216	CHEMISTRY: A New Route to Designer Antibiotics. Science, 2005, 308, 367-368.	6.0	19

#	Article	IF	CITATIONS
217	Reconstitution and Characterization of a New Desosaminyl Transferase, EryCIII, from the Erythromycin Biosynthetic Pathway. Journal of the American Chemical Society, 2004, 126, 9924-9925.	6.6	17
218	Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4175-4179.	3.3	386
219	Effect of Prolyl Endopeptidase on Digestive-Resistant Gliadin Peptides in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 213-219.	1.3	101
220	Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochemical Journal, 2004, 383, 311-318.	1.7	204
221	Engineered Biosynthesis of Regioselectively Modified Aromatic Polyketides Using Bimodular Polyketide Synthases. PLoS Biology, 2004, 2, e31.	2.6	71
222	Reconstituting Modular Activity from Separated Domains of 6-Deoxyerythronolide B Synthaseâ€. Biochemistry, 2004, 43, 13892-13898.	1.2	63
223	Manipulation and Analysis of Polyketide Synthases. Methods in Enzymology, 2004, 388, 269-293.	0.4	17
224	An antibiotic factory caught in action. Nature Structural and Molecular Biology, 2004, 11, 888-893.	3.6	162
225	Exploring the biosynthetic potential of bimodular aromatic polyketide synthases. Tetrahedron, 2004, 60, 7659-7671.	1.0	14
226	Engineered biosynthesis of polyketides in heterologous hosts. Chemical Engineering Science, 2004, 59, 4693-4701.	1.9	10
227	Antigen Presentation to Celiac Lesion-Derived T Cells of a 33-Mer Gliadin Peptide Naturally Formed by Gastrointestinal Digestion. Journal of Immunology, 2004, 173, 1757-1762.	0.4	140
228	Biochemical Analysis of the Substrate Specificity of the β-Ketoacyl-Acyl Carrier Protein Synthase Domain of Module 2 of the Erythromycin Polyketide Synthaseâ€. Biochemistry, 2004, 43, 16301-16310.	1.2	42
229	Precursor-Directed Biosynthesis of Epothilone inEscherichiacoli. Journal of the American Chemical Society, 2004, 126, 7436-7437.	6.6	60
230	Precursor-Directed polyketide biosynthesis in Escherichia coli. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3701-3704.	1.0	25
231	Catalysis, Specificity, and ACP Docking Site of Streptomyces coelicolor Malonyl-CoA:ACP Transacylase. Structure, 2003, 11, 147-154.	1.6	125
232	Precursor-Directed Biosynthesis: Stereospecificity for Branched-Chain Diketides of theβ-Ketoacyl-ACP Synthase Domain 2 of 6-Deoxyerythronolide B Synthase. Helvetica Chimica Acta, 2003, 86, 3889-3907.	1.0	17
233	Building-block selectivity of polyketide synthases. Current Opinion in Chemical Biology, 2003, 7, 279-284.	2.8	53
234	Metabolic engineering for drug discovery and development. Nature Reviews Drug Discovery, 2003, 2, 1019-1025.	21.5	187

#	Article	IF	CITATIONS
235	Design, Synthesis, and Evaluation of Gluten Peptide Analogs as Selective Inhibitors of Human Tissue Transglutaminase. Chemistry and Biology, 2003, 10, 225-231.	6.2	75
236	Mechanistic Analysis of Acyl Transferase Domain Exchange in Polyketide Synthase Modules. Journal of the American Chemical Society, 2003, 125, 5366-5374.	6.6	67
237	Ketosynthases in the Initiation and Elongation Modules of Aromatic Polyketide Synthases Have Orthogonal Acyl Carrier Protein Specificityâ€. Biochemistry, 2003, 42, 6588-6595.	1.2	62
238	Expression and Kinetic Analysis of the Substrate Specificity of Modules 5 and 6 of the Picromycin/Methymycin Polyketide Synthase. Journal of the American Chemical Society, 2003, 125, 5671-5676.	6.6	25
239	Solution Structure and Backbone Dynamics of the Holo Form of the Frenolicin Acyl Carrier Proteinâ€,â—Š. Biochemistry, 2003, 42, 4648-4657.	1.2	93
240	Intermodular Communication in Modular Polyketide Synthases:Â Structural and Mutational Analysis of Linker Mediated Proteinâ^'Protein Recognition. Journal of the American Chemical Society, 2003, 125, 4097-4102.	6.6	38
241	A Switch for the Transfer of Substrate between Nonribosomal Peptide and Polyketide Modules of the Rifamycin Synthetase Assembly Line. Journal of the American Chemical Society, 2003, 125, 13664-13665.	6.6	22
242	Polyketide Chain Length Control by Chain Length Factor. Journal of the American Chemical Society, 2003, 125, 12708-12709.	6.6	102
243	Epothilone C Macrolactonization and Hydrolysis Are Catalyzed by the Isolated Thioesterase Domain of Epothilone Polyketide Synthase. Journal of the American Chemical Society, 2003, 125, 3428-3429.	6.6	80
244	Enhancing the Modularity of the Modular Polyketide Synthases:  Transacylation in Modular Polyketide Synthases Catalyzed by Malonyl-CoA:ACP Transacylase. Journal of the American Chemical Society, 2003, 125, 14307-14312.	6.6	51
245	Quantitative Analysis of Loading and Extender Acyltransferases of Modular Polyketide Synthasesâ€. Biochemistry, 2003, 42, 200-207.	1.2	42
246	Crystal Structure of an Acyl-ACP Dehydrogenase from the FK520 Polyketide Biosynthetic Pathway: Insights into Extender Unit Biosynthesis. Journal of Molecular Biology, 2003, 334, 435-444.	2.0	35
247	Biosynthesis of Yersiniabactin, a Complex Polyketide-Nonribosomal Peptide, Using Escherichia coli as a Heterologous Host. Applied and Environmental Microbiology, 2003, 69, 6698-6702.	1.4	111
248	Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9774-9778.	3.3	83
249	Understanding Substrate Specificity of Polyketide Synthase Modules by Generating Hybrid Multimodular Synthases. Journal of Biological Chemistry, 2003, 278, 42020-42026.	1.6	65
250	A specific role of the Saccharopolyspora erythraea thioesterase II gene in the function of modular polyketide synthases. Microbiology (United Kingdom), 2003, 149, 2213-2225.	0.7	42
251	Process and Metabolic Strategies for Improved Production of Escherichia coli -Derived 6-Deoxyerythronolide B. Applied and Environmental Microbiology, 2002, 68, 3287-3292.	1.4	87
252	Circular Dichroism and Nuclear Magnetic Resonance Spectroscopic Analysis of Immunogenic Gluten Peptides and Their Analogs. Journal of Biological Chemistry, 2002, 277, 45572-45578.	1.6	34

#	Article	IF	CITATIONS
253	Kinetic and Structural Analysis of a New Group of Acyl-CoA Carboxylases Found in Streptomyces coelicolor A3(2). Journal of Biological Chemistry, 2002, 277, 31228-31236.	1.6	74
254	Intestinal digestive resistance of immunodominant gliadin peptides. American Journal of Physiology - Renal Physiology, 2002, 283, C996-G1003.	1.6	296
255	The Loading and Initial Elongation Modules of Rifamycin Synthetase Collaborate To Produce Mixed Aryl Ketide Productsâ€. Biochemistry, 2002, 41, 5313-5324.	1.2	26
256	Expression, Site-Directed Mutagenesis, and Steady State Kinetic Analysis of the Terminal Thioesterase Domain of the Methymycin/Picromycin Polyketide Synthaseâ€. Biochemistry, 2002, 41, 12590-12597.	1.2	61
257	Insights into Channel Architecture and Substrate Specificity from Crystal Structures of Two Macrocycle-Forming Thioesterases of Modular Polyketide Synthasesâ€,â€j. Biochemistry, 2002, 41, 12598-12606.	1.2	113
258	High Selectivity of Human Tissue Transglutaminase for Immunoactive Gliadin Peptides:Â Implications for Celiac Sprueâ€. Biochemistry, 2002, 41, 386-393.	1.2	125
259	Metabolic Engineering of a Methylmalonyl-CoA Mutaseâ^'Epimerase Pathway for Complex Polyketide Biosynthesis inEscherichia coliâ€,‡. Biochemistry, 2002, 41, 5193-5201.	1.2	82
260	Quantitative Analysis of the Relative Contributions of Donor Acyl Carrier Proteins, Acceptor Ketosynthases, and Linker Regions to Intermodular Transfer of Intermediates in Hybrid Polyketide Synthases. Biochemistry, 2002, 41, 5056-5066.	1.2	120
261	Crystal Structure of the Priming β-Ketosynthase from the R1128 Polyketide Biosynthetic Pathway. Structure, 2002, 10, 1559-1568.	1.6	75
262	Biochemistry—engineering interface in biochemical engineering. AICHE Journal, 2002, 48, 1366-1368.	1.8	5
263	Engineering of molecular and cellular biocatalysts: Selected contributions by James E. Bailey. Biotechnology and Bioengineering, 2002, 79, 490-495.	1.7	3
264	Precursor-Directed Biosynthesis. Chemistry and Biology, 2002, 9, 131-142.	6.2	53
265	Structural Basis for Gluten Intolerance in Celiac Sprue. Science, 2002, 297, 2275-2279.	6.0	1,383
266	Biosynthesis of Complex Polyketides in a Metabolically Engineered Strain of E. coli. Science, 2001, 291, 1790-1792.	6.0	687
267	Structureâ^Activity Relationships within a Family of Selectively Cytotoxic Macrolide Natural Products. Organic Letters, 2001, 3, 57-59.	2.4	51
268	Remarkably Broad Substrate Tolerance of Malonyl-CoA Synthetase, an Enzyme Capable of Intracellular Synthesis of Polyketide Precursors. Journal of the American Chemical Society, 2001, 123, 5822-5823.	6.6	42
269	Precursor-Directed Biosynthesis of 16-Membered Macrolides by the Erythromycin Polyketide Synthase. Journal of the American Chemical Society, 2001, 123, 2495-2502.	6.6	46
270	Assessing the Balance between Proteinâ^'Protein Interactions and Enzymeâ^'Substrate Interactions in the Channeling of Intermediates between Polyketide Synthase Modules. Journal of the American Chemical Society, 2001, 123, 6465-6474.	6.6	124

#	Article	IF	CITATIONS
271	The Loading Module of Rifamycin Synthetase Is an Adenylationâ^'Thiolation Didomain with Substrate Tolerance for Substituted Benzoates. Biochemistry, 2001, 40, 6116-6123.	1.2	62
272	Malonyl-CoA:ACP Transacylase fromStreptomyces coelicolorHas Two Alternative Catalytically Active Nucleophilesâ€. Biochemistry, 2001, 40, 12407-12411.	1.2	31
273	Intermodular Communication in Polyketide Synthases:  Comparing the Role of Proteinâ^'Protein Interactions to Those in Other Multidomain Proteins. Biochemistry, 2001, 40, 2317-2325.	1.2	43
274	Erythromycin biosynthesis. The 4-pro-S hydride of NADPH is utilized for ketoreduction by both module 5 and module 6 of the 6-deoxyerythronolide B synthase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1477-1479.	1.0	35
275	Apoptolidin, a selective cytotoxic agent, is an inhibitor of F0F1-ATPase. Chemistry and Biology, 2001, 8, 71-80.	6.2	138
276	Modular enzymes. Nature, 2001, 409, 247-252.	13.7	137
277	Enhancing the Atom Economy of Polyketide Biosynthetic Processes through Metabolic Engineering. Biotechnology Progress, 2001, 17, 612-617.	1.3	48
278	Selective Proteinâ^'Protein Interactions Direct Channeling of Intermediates between Polyketide Synthase Modules. Biochemistry, 2001, 40, 2326-2331.	1.2	122
279	Biosynthesis of Polyketides in Heterologous Hosts. Microbiology and Molecular Biology Reviews, 2001, 65, 106-118.	2.9	225
280	Dissecting the Chain Length Specificity in Bacterial Aromatic Polyketide Synthases using Chimeric Genes. Tetrahedron, 2000, 56, 9401-9408.	1.0	65
281	Role of linkers in communication between protein modules. Current Opinion in Chemical Biology, 2000, 4, 22-27.	2.8	179
282	Natural Product Biosynthesis:Â A New Interface between Enzymology and Medicine. Journal of Organic Chemistry, 2000, 65, 8127-8133.	1.7	64
283	Cloning, Nucleotide Sequence, and Heterologous Expression of the Biosynthetic Gene Cluster for R1128, a Non-steroidal Estrogen Receptor Antagonist. Journal of Biological Chemistry, 2000, 275, 33443-33448.	1.6	86
284	Directed Transfer of Large DNA Fragments between Streptomyces Species. Applied and Environmental Microbiology, 2000, 66, 2274-2277.	1.4	15
285	Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene, 2000, 249, 153-160.	1.0	172
286	Cloning and Heterologous Expression of the Epothilone Gene Cluster. Science, 2000, 287, 640-642.	6.0	429
287	Mechanistic Analysis of a Type II Polyketide Synthase. Role of Conserved Residues in the β-Ketoacyl Synthaseâ~'Chain Length Factor Heterodimer. Biochemistry, 2000, 39, 2088-2095.	1.2	66
288	Substrate Specificity of the Loading Didomain of the Erythromycin Polyketide Synthaseâ€. Biochemistry, 2000, 39, 10514-10520.	1.2	50

#	Article	IF	CITATIONS
289	Analysis of the Molecular Recognition Features of Individual Modules Derived from the Erythromycin Polyketide Synthase. Journal of the American Chemical Society, 2000, 122, 4847-4852.	6.6	71
290	Kinetic Analysis of the Actinorhodin Aromatic Polyketide Synthase. Journal of Biological Chemistry, 1999, 274, 25108-25112.	1.6	57
291	Precursor directed biosynthesis of novel 6-deoxyerythronolide B analogs containing non-natural oxygen substituents and reactive functionalities. Tetrahedron Letters, 1999, 40, 635-638.	0.7	23
292	Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. Chemistry and Biology, 1999, 6, 117-125.	6.2	140
293	Heterologous expression, purification, reconstitution and kinetic analysis of an extended type II polyketide synthase. Chemistry and Biology, 1999, 6, 607-615.	6.2	37
294	Tolerance and Specificity of Recombinant 6-Methylsalicylic Acid Synthase. Metabolic Engineering, 1999, 1, 180-187.	3.6	26
295	Dissecting and Exploiting Intermodular Communication in Polyketide Synthases. Science, 1999, 284, 482-485.	6.0	330
296	Tolerance and Specificity of Polyketide Synthases. Annual Review of Biochemistry, 1999, 68, 219-253.	5.0	348
297	Dissecting the Role of Acyltransferase Domains of Modular Polyketide Synthases in the Choice and Stereochemical Fate of Extender Units. Biochemistry, 1999, 38, 1643-1651.	1.2	81
298	A host–vector system for analysis and manipulation of rifamycin polyketide biosynthesis in Amycolatopsis mediterranei. Microbiology (United Kingdom), 1999, 145, 2335-2341.	0.7	15
299	Precursor-directed biosynthesis of 12-ethyl erythromycin. Bioorganic and Medicinal Chemistry, 1998, 6, 1171-1177.	1.4	43
300	New directions in metabolic engineering. Current Opinion in Chemical Biology, 1998, 2, 133-137.	2.8	21
301	Synthesis and Incorporation of anN-Acetylcysteamine Analogue of Methylmalonyl-CoA by a Modular Polyketide Synthase. Journal of the American Chemical Society, 1998, 120, 11206-11207.	6.6	27
302	Purification and in Vitro Reconstitution of the Essential Protein Components of an Aromatic Polyketide Synthaseâ€. Biochemistry, 1998, 37, 2084-2088.	1.2	86
303	Erythromycin Biosynthesis: The β-Ketoreductase Domains Catalyze the Stereospecific Transfer of the 4-pro-SHydride of NADPH. Journal of the American Chemical Society, 1998, 120, 3267-3268.	6.6	48
304	Primer Unit Specificity in Rifamycin Biosynthesis Principally Resides in the Later Stages of the Biosynthetic Pathway. Journal of the American Chemical Society, 1998, 120, 1092-1093.	6.6	42
305	Engineered Biosynthesis of Novel Polyketides fromStreptomycesSpore Pigment Polyketide Synthases. Journal of the American Chemical Society, 1998, 120, 7749-7759.	6.6	92
306	Functional Orientation of the Acyltransferase Domain in a Module of the Erythromycin Polyketide Synthaseâ€. Biochemistry, 1998, 37, 2524-2528.	1.2	46

#	Article	IF	CITATIONS
307	Alcohol Stereochemistry in Polyketide Backbones Is Controlled by the β-Ketoreductase Domains of Modular Polyketide Synthases. Journal of the American Chemical Society, 1998, 120, 2478-2479.	6.6	81
308	Dissecting the Evolutionary Relationship between 14-Membered and 16-Membered Macrolides. Journal of the American Chemical Society, 1998, 120, 9096-9097.	6.6	18
309	Harnessing the Biosynthetic Code: Combinations, Permutations, and Mutations. , 1998, 282, 63-68.		539
310	Spontaneous Priming of a Downstream Module in 6-Deoxyerythronolide B Synthase Leads to Polyketide Biosynthesis. Biochemistry, 1998, 37, 4928-4934.	1.2	36
311	Harnessing the Biosynthetic Potential of Modular Polyketide Synthases. Chemical Reviews, 1997, 97, 2577-2590.	23.0	202
312	Domain Analysis of the Molecular Recognition Features of Aromatic Polyketide Synthase Subunits. Journal of Biological Chemistry, 1997, 272, 16184-16188.	1.6	32
313	Utilization of Enzymatically Phosphopantetheinylated Acyl Carrier Proteins and Acetylâ^'Acyl Carrier Proteins by the Actinorhodin Polyketide Synthaseâ€. Biochemistry, 1997, 36, 11757-11761.	1.2	45
314	Gain-of-Function Mutagenesis of a Modular Polyketide Synthase. Journal of the American Chemical Society, 1997, 119, 4309-4310.	6.6	77
315	Rational Design and Engineered Biosynthesis of a Novel 18-Carbon Aromatic Polyketide. Journal of the American Chemical Society, 1997, 119, 635-639.	6.6	56
316	Gain of Function Mutagenesis of the Erythromycin Polyketide Synthase. 2. Engineered Biosynthesis of an Eight-Membered Ring Tetraketide Lactone. Journal of the American Chemical Society, 1997, 119, 11339-11340.	6.6	79
317	Precursor-Directed Biosynthesis of Erythromycin Analogs by an Engineered Polyketide Synthase. Science, 1997, 277, 367-369.	6.0	271
318	Engineered intermodular and intramodular polyketide synthase fusions. Chemistry and Biology, 1997, 4, 667-674.	6.2	78
319	Molecular recognition of diketide substrates by a β-ketoacyl-acyl carrier protein synthase domain within a bimodular polyketide synthase. Chemistry and Biology, 1997, 4, 757-766.	6.2	43
320	Engineering of Novel Polyketides Annals of the New York Academy of Sciences, 1996, 799, 32-45.	1.8	6
321	Engineered Biosynthesis of Novel Polyketides: Regiospecific Methylation of an Unnatural Substrate by the tcmOO-Methyltransferaseâ€. Biochemistry, 1996, 35, 6527-6532.	1.2	28
322	Engineered Biosynthesis of Structurally Diverse Tetraketides by a Trimodular Polyketide Synthase. Journal of the American Chemical Society, 1996, 118, 9184-9185.	6.6	86
323	Evidence for Two Catalytically Independent Clusters of Active Sites in a Functional Modular Polyketide Synthaseâ€. Biochemistry, 1996, 35, 12363-12368.	1.2	100
324	Efficient Synthesis of Aromatic Polyketidesin Vitroby the Actinorhodin Polyketide Synthase. Journal of the American Chemical Society, 1996, 118, 5158-5159.	6.6	38

#	Article	IF	CITATIONS
325	6-Deoxyerythronolide B Synthase 1 Is Specifically Acylated by a Diketide Intermediate at the β-Ketoacyl-Acyl Carrier Protein Synthase Domain of Module 2â€. Biochemistry, 1996, 35, 15244-15248.	1.2	24
326	Specificity and versatility in erythromycin biosynthesis. Chemical Society Reviews, 1996, 25, 297.	18.7	18
327	Generation of polyketide libraries via combinatorial biosynthesis. Trends in Biotechnology, 1996, 14, 335-341.	4.9	110
328	Antibiotic activity of polyketide products derived from combinatorial biosynthesis: Implications for directed evolution. Molecular Diversity, 1996, 1, 121-124.	2.1	11
329	A new enzyme superfamily — the phosphopantetheinyl transferases. Chemistry and Biology, 1996, 3, 923-936.	6.2	746
330	Evolutionally guided enzyme design. , 1996, 52, 122-128.		15
331	Erythromycin biosynthesis: Exploiting the catalytic versatility of the modular polyketide synthase. Bioorganic and Medicinal Chemistry, 1996, 4, 995-999.	1.4	25
332	Engineered Biosynthesis of Novel Polyketides: Properties of the whiE Aromatase/Cyclase. Nature Biotechnology, 1996, 14, 335-338.	9.4	40
333	Combinatorial chemistry and biology: an opportunity for engineers. Current Opinion in Biotechnology, 1996, 7, 219-222.	3.3	10
334	A functional chimeric modular polyketide synthase generated via domain replacement. Chemistry and Biology, 1996, 3, 827-831.	6.2	64
335	Deciphering the biosynthetic origin of the aglycone of the aureolic acid group of anti-tumor agents. Chemistry and Biology, 1996, 3, 193-196.	6.2	42
336	Erythromycin Biosynthesis. Highly Efficient Incorporation of Polyketide Chain Elongation Intermediates into 6-Deoxyerythronolide B in an Engineered Streptomyces Host Journal of Antibiotics, 1995, 48, 647-651.	1.0	24
337	Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature, 1995, 375, 549-554.	13.7	286
338	Combinatorial biosynthesis of â€~unnatural' natural products: the polyketide example. Chemistry and Biology, 1995, 2, 355-362.	6.2	87
339	Remarkably broad substrate specificity of a modular polyketide synthase in a cell-free system. Journal of the American Chemical Society, 1995, 117, 11373-11374.	6.6	53
340	Engineered Biosynthesis of Novel Polyketides: Analysis of tcmN Function in Tetracenomycin Biosynthesis. Journal of the American Chemical Society, 1995, 117, 6805-6810.	6.6	60
341	Engineered biosynthesis of novel polyketides: evidence for temporal, but not regiospecific, control of cyclization of an aromatic polyketide precursor. Chemistry and Biology, 1994, 1, 205-210.	6.2	72
342	Efficient Sampling of Protein Sequence Space for Multiple Mutants. Bio/technology, 1994, 12, 517-520.	1.9	4

#	Article	IF	CITATIONS
343	Engineered Biosynthesis of Novel Polyketides: actVII and actIV Genes Encode Aromatase and Cyclase Enzymes, Respectively. Journal of the American Chemical Society, 1994, 116, 10855-10859.	6.6	95
344	Engineered biosynthesis of a triketide lactone from an incomplete modular polyketide synthase. Journal of the American Chemical Society, 1994, 116, 11612-11613.	6.6	96
345	Engineered Biosynthesis of Novel Polyketides: Dissection of the Catalytic Specificity of the act Ketoreductase. Journal of the American Chemical Society, 1994, 116, 4166-4170.	6.6	125
346	Relaxed Specificity of the Oxytetracycline Polyketide Synthase for an Acetate Primer in the Absence of a Malonamyl Primer. Journal of the American Chemical Society, 1994, 116, 6443-6444.	6.6	52
347	Engineered biosynthesis of novel polyketides: manipulation and analysis of an aromatic polyketide synthase with unproven catalytic specificities. Journal of the American Chemical Society, 1993, 115, 11671-11675.	6.6	95
348	Targeted gene replacements in a Streptomyces polyketide synthase gene cluster: role for the acyl carrier protein. Molecular Microbiology, 1992, 6, 3237-3249.	1.2	79
349	Genes for Polyketide Secondary Metabolic Pathways in Microorganisms and Plants. Novartis Foundation Symposium, 1992, 171, 88-112.	1.2	24
350	Expression of Intracellular Hemoglobin Improves Protein Synthesis in Oxygen-Limited Escherichia coli. Nature Biotechnology, 1990, 8, 849-853.	9.4	82
351	Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli. Journal of Molecular Biology, 1989, 210, 79-89.	2.0	64
352	The Vitreoscilla hemoglobin gene: Molecular cloning, nucleotide sequence and genetic expression in Escherichia coli. Molecular Genetics and Genomics, 1988, 214, 158-161.	2.4	119
353	Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 1988, 331, 633-635.	13.7	233