
Menno P Witter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7316985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prenatal development of the human entorhinal cortex. Journal of Comparative Neurology, 2022, 530, 2711-2748.	1.6	7
2	The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. Journal of Comparative Neurology, 2021, 529, 828-852.	1.6	39
3	Densities and numbers of calbindin and parvalbumin positive neurons across the rat and mouse brain. IScience, 2021, 24, 101906.	4.1	35
4	Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex. ELife, 2021, 10, .	6.0	13
5	Development of the Entorhinal Cortex Occurs via Parallel Lamination During Neurogenesis. Frontiers in Neuroanatomy, 2021, 15, 663667.	1.7	7
6	Task-dependent mixed selectivity in the subiculum. Cell Reports, 2021, 35, 109175.	6.4	25
7	Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Research Reviews, 2021, 67, 101307.	10.9	62
8	Not All That Is Gold Glitters: PV-IRES-Cre Mouse Line Shows Low Efficiency of Labeling of Parvalbumin Interneurons in the Perirhinal Cortex. Frontiers in Neural Circuits, 2021, 15, 781928.	2.8	8
9	Structural connectivity-based segmentation of the human entorhinal cortex. NeuroImage, 2021, 245, 118723.	4.2	14
10	Laminar Organization of the Entorhinal Cortex in Macaque Monkeys Based on Cell-Type-Specific Markers and Connectivity. Frontiers in Neural Circuits, 2021, 15, 790116.	2.8	8
11	A Brainstem Locomotor Circuit Drives the Activity of Speed Cells in the Medial Entorhinal Cortex. Cell Reports, 2020, 32, 108123.	6.4	41
12	Development and topographic organization of subicular projections to lateral septum in the rat brain. European Journal of Neuroscience, 2020, 52, 3140-3159.	2.6	2
13	Developmental, cellular, and behavioral phenotypes in a mouse model of congenital hypoplasia of the dentate gyrus. ELife, 2020, 9, .	6.0	2
14	Architecture and organization of mouse posterior parietal cortex relative to extrastriate areas. European Journal of Neuroscience, 2019, 49, 1313-1329.	2.6	57
15	Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus, 2019, 29, 1238-1254.	1.9	111
16	Neuronal chemoâ€architecture of the entorhinal cortex: A comparative review. European Journal of Neuroscience, 2019, 50, 3627-3662.	2.6	28
17	Organization of Posterior Parietal–Frontal Connections in the Rat. Frontiers in Systems Neuroscience, 2019, 13, 38.	2.5	18
18	Entorhinal Layer II Calbindin-Expressing Neurons Originate Widespread Telencephalic and Intrinsic Projections. Frontiers in Systems Neuroscience, 2019, 13, 54.	2.5	26

#	Article	IF	CITATIONS
19	Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. Cell Reports, 2019, 29, 617-627.e7.	6.4	69
20	Postnatal Development of Functional Projections from Parasubiculum and Presubiculum to Medial Entorhinal Cortex in the Rat. Journal of Neuroscience, 2019, 39, 8645-8663.	3.6	7
21	GABAA Receptor Subunit $\hat{l}\pm3$ in Network Dynamics in the Medial Entorhinal Cortex. Frontiers in Systems Neuroscience, 2019, 13, 10.	2.5	9
22	The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learning and Memory, 2019, 26, 191-205.	1.3	146
23	Development and topographical organization of projections from the hippocampus and parahippocampus to the retrosplenial cortex. European Journal of Neuroscience, 2019, 50, 1799-1819.	2.6	17
24	Electrophysiological Characterization of Networks and Single Cells in the Hippocampal Region of a Transgenic Rat Model of Alzheimer's Disease. ENeuro, 2019, 6, ENEURO.0448-17.2019.	1.9	18
25	Entorhinal fast-spiking speed cells project to the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1627-E1636.	7.1	44
26	Inhibitory Connectivity Dominates the Fan Cell Network in Layer II of Lateral Entorhinal Cortex. Journal of Neuroscience, 2018, 38, 9712-9727.	3.6	42
27	Intrinsic Projections of Layer Vb Neurons to Layers Va, III, and II in the Lateral and Medial Entorhinal Cortex of the Rat. Cell Reports, 2018, 24, 107-116.	6.4	58
28	Marked Diversity of Unique Cortical Enhancers Enables Neuron-Specific Tools by Enhancer-Driven Gene Expression. Current Biology, 2018, 28, 2103-2114.e5.	3.9	66
29	A transatlantic cooperation for enriched neuroscience training. European Journal of Neuroscience, 2018, 48, 1717-1719.	2.6	0
30	Development of Parvalbumin-Expressing Basket Terminals in Layer II of the Rat Medial Entorhinal Cortex. ENeuro, 2018, 5, ENEURO.0438-17.2018.	1.9	8
31	MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Structure and Function, 2017, 222, 3107-3126.	2.3	7
32	Perirhinal firing patterns are sustained across large spatial segments of the task environment. Nature Communications, 2017, 8, 15602.	12.8	42
33	Parahippocampal and retrosplenial connections of rat posterior parietal cortex. Hippocampus, 2017, 27, 335-358.	1.9	48
34	Architecture of the Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative Notes. Frontiers in Systems Neuroscience, 2017, 11, 46.	2.5	250
35	Comparative Contemplations on the Hippocampus. Brain, Behavior and Evolution, 2017, 90, 15-24.	1.7	21
36	Posterior parietal cortex of the rat: Architectural delineation and thalamic differentiation. Journal of Comparative Neurology, 2016, 524, 3774-3809.	1.6	41

#	Article	IF	CITATIONS
37	Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat. Journal of Neuroscience, 2016, 36, 4591-4599.	3.6	2
38	Cover Image, Volume 26, Issue 10. Hippocampus, 2016, 26, C1-C1.	1.9	0
39	Reelin-immunoreactive neurons in entorhinal cortex layer II selectively express intracellular amyloid in early Alzheimer's disease. Neurobiology of Disease, 2016, 93, 172-183.	4.4	58
40	Postnatal development of retrosplenial projections to the parahippocampal region of the rat. ELife, 2016, 5, .	6.0	22
41	Hippocampal Formation. , 2015, , 511-573.		48
42	Hippocampus and Related Structures. , 2015, , 886-891.		0
43	A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation. Nature, 2015, 522, 50-55.	27.8	372
44	Excitatory Postrhinal Projections to Principal Cells in the Medial Entorhinal Cortex. Journal of Neuroscience, 2015, 35, 15860-15874.	3.6	24
45	Topography of Place Maps along the CA3-to-CA2 Axis of the Hippocampus. Neuron, 2015, 87, 1078-1092.	8.1	117
46	Thalamus. , 2015, , 335-390.		25
47	Waxholm Space atlas of the rat brain hippocampal region: Three-dimensional delineations based on magnetic resonance and diffusion tensor imaging. NeuroImage, 2015, 108, 441-449.	4.2	92
48	Insular projections to the parahippocampal region in the rat. Journal of Comparative Neurology, 2015, 523, 1379-1398.	1.6	26
49	Hippocampal Remapping after Partial Inactivation of the Medial Entorhinal Cortex. Neuron, 2015, 88, 590-603.	8.1	100
50	Stereological estimation of neuron number and plaque load in the hippocampal region of a transgenic rat model of <scp>A</scp> lzheimer's disease. European Journal of Neuroscience, 2015, 41, 1245-1262.	2.6	43
51	A threeâ€plane architectonic atlas of the rat hippocampal region. Hippocampus, 2015, 25, 838-857.	1.9	64
52	Identification of dorsal–ventral hippocampal differentiation in neonatal rats. Brain Structure and Function, 2015, 220, 2873-2893.	2.3	31
53	From details to large scale: The representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior–posterior axis. Hippocampus, 2015, 25, 119-135.	1.9	50
54	Functional connectivity of the entorhinal–hippocampal space circuit. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120516.	4.0	42

#	Article	IF	CITATIONS
55	Topographic organization of orbitofrontal projections to the parahippocampal region in rats. Journal of Comparative Neurology, 2014, 522, 772-793.	1.6	54
56	Architecture of spatial circuits in the hippocampal region. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120515.	4.0	43
57	Neuronal and Astrocytic Metabolism in a Transgenic Rat Model of Alzheimer's Disease. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 906-914.	4.3	58
58	Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 2014, 15, 655-669.	10.2	1,268
59	Grid cells and cortical representation. Nature Reviews Neuroscience, 2014, 15, 466-481.	10.2	249
60	Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nature Neuroscience, 2013, 16, 1085-1093.	14.8	90
61	Transgenically Targeted Rabies Virus Demonstrates a Major Monosynaptic Projection from Hippocampal Area CA2 to Medial Entorhinal Layer II Neurons. Journal of Neuroscience, 2013, 33, 14889-14898.	3.6	89
62	Subicular-parahippocampal projections revisited: Development of a complex topography in the rat. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	1.6	0
63	Recurrent inhibitory circuitry as a mechanism for grid formation. Nature Neuroscience, 2013, 16, 318-324.	14.8	351
64	The Anterior Hippocampus Supports a Coarse, Global Environmental Representation and the Posterior Hippocampus Supports Fine-grained, Local Environmental Representations. Journal of Cognitive Neuroscience, 2013, 25, 1908-1925.	2.3	69
65	Superficially Projecting Principal Neurons in Layer V of Medial Entorhinal Cortex in the Rat Receive Excitatory Retrosplenial Input. Journal of Neuroscience, 2013, 33, 15779-15792.	3.6	54
66	Subicular–parahippocampal projections revisited: Development of a complex topography in the rat. Journal of Comparative Neurology, 2013, 521, 4284-4299.	1.6	26
67	Organization of Multisynaptic Inputs to the Dorsal and Ventral Dentate Gyrus: Retrograde Trans-Synaptic Tracing with Rabies Virus Vector in the Rat. PLoS ONE, 2013, 8, e78928.	2.5	35
68	Yartsev et al. reply. Nature, 2012, 488, E2-E2.	27.8	3
69	All Layers of Medial Entorhinal Cortex Receive Presubicular and Parasubicular Inputs. Journal of Neuroscience, 2012, 32, 17620-17631.	3.6	53
70	Altered neurochemical profile in the <scp>M</scp> cGillâ€ <scp>R</scp> â€ <scp>T</scp> hy1â€ <scp>APP</scp> rat model of <scp>A</scp> lzheimer's disease: a longitudinal <i>in vivo</i> ¹ H <scp>MRS</scp> study. Journal of Neurochemistry, 2012, 123, 532-541.	3.9	34
71	Hippocampus. , 2012, , 112-139.		23
72	Presubiculum layer III conveys retrosplenial input to the medial entorhinal cortex. Hippocampus, 2012, 22, 881-895.	1.9	49

#	Article	IF	CITATIONS
73	Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex. Hippocampus, 2012, 22, 1256-1276.	1.9	99
74	Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex. Hippocampus, 2012, 22, 1277-1299.	1.9	121
75	A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews Neuroscience, 2011, 12, 585-601.	10.2	748
76	Grid cells without theta oscillations in the entorhinal cortex of bats. Nature, 2011, 479, 103-107.	27.8	376
77	Digital Atlas of Anatomical Subdivisions and Boundaries of the Rat Hippocampal Region. Frontiers in Neuroinformatics, 2011, 5, 2.	2.5	60
78	The Retrosplenial Cortex: Intrinsic Connectivity and Connections with the (Para)Hippocampal Region in the Rat. An Interactive Connectome. Frontiers in Neuroinformatics, 2011, 5, 7.	2.5	187
79	Grid cells in pre- and parasubiculum. Nature Neuroscience, 2010, 13, 987-994.	14.8	739
80	Spatial Representation along the Proximodistal Axis of CA1. Neuron, 2010, 68, 127-137.	8.1	236
81	Development of the Spatial Representation System in the Rat. Science, 2010, 328, 1576-1580.	12.6	825
82	Connectivity of the Hippocampus. , 2010, , 5-26.		24
83	Dual transneuronal tracing in the rat entorhinal-hippocampal circuit by intracerebral injection of recombinant rabies virus vectors. Frontiers in Neuroanatomy, 2009, 3, 1.	1.7	86
84	Neurotoxic lesions of the thalamic reuniens or mediodorsal nucleus in rats affect non-mnemonic aspects of watermaze learning. Brain Structure and Function, 2009, 213, 329-342.	2.3	75
85	Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1—An anatomical study in the rat. Hippocampus, 2008, 18, 266-280.	1.9	87
86	Grid cells in mice. Hippocampus, 2008, 18, 1230-1238.	1.9	394
87	Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus, 2008, 18, 1200-1212.	1.9	534
88	Significance of the deep layers of entorhinal cortex for transfer of both perirhinal and amygdala inputs to the hippocampus. Neuroscience Research, 2008, 61, 172-181.	1.9	32
89	Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex. Neuron, 2008, 57, 290-302.	8.1	323
90	Navigating from hippocampus to parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14755-14762.	7.1	256

#	Article	IF	CITATIONS
91	Finite Scale of Spatial Representation in the Hippocampus. Science, 2008, 321, 140-143.	12.6	562
92	What Does the Anatomical Organization of the Entorhinal Cortex Tell Us?. Neural Plasticity, 2008, 2008, 1-18.	2.2	311
93	Intrinsic and extrinsic wiring of CA3: Indications for connectional heterogeneity. Learning and Memory, 2007, 14, 705-713.	1.3	193
94	The perforant path: projections from the entorhinal cortex to the dentate gyrus. Progress in Brain Research, 2007, 163, 43-61.	1.4	293
95	Cingulate cortex projections to the parahippocampal region and hippocampal formation in the rat. Hippocampus, 2007, 17, 957-976.	1.9	156
96	Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex. Brain Structure and Function, 2007, 212, 303-319.	2.3	15
97	Connections of the subiculum of the rat: Topography in relation to columnar and laminar organization. Behavioural Brain Research, 2006, 174, 251-264.	2.2	132
98	Spatial representation and the architecture of the entorhinal cortex. Trends in Neurosciences, 2006, 29, 671-678.	8.6	444
99	Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex. Science, 2006, 312, 758-762.	12.6	1,464
100	Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex. Neuron, 2005, 45, 301-313.	8.1	292
101	Hippocampal Formation. , 2004, , 635-704.		191
102	Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat. Brain Research, 2004, 1013, 1-12.	2.2	39
103	Cytoarchitectonic characterization of the parahippocampal region of the guinea pig. Journal of Comparative Neurology, 2004, 474, 289-303.	1.6	26
104	Spatial Representation in the Entorhinal Cortex. Science, 2004, 305, 1258-1264.	12.6	1,143
105	Topographical and laminar organization of subicular projections to the parahippocampal region of the rat. Journal of Comparative Neurology, 2003, 455, 156-171.	1.6	99
106	Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. Hippocampus, 2003, 13, 943-952.	1.9	122
107	Synaptic contacts between identified neurons visualized in the confocal laserscanning microscope. Neuroanatomical tracing combined with immunofluorescence detection of post-synaptic density proteins and target neuron-markers. Journal of Neuroscience Methods, 2003, 128, 129-142.	2.5	55
108	Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re-entrance in the hippocampal-entorhinal system. European Journal of Neuroscience, 2003, 18, 3037-3052.	2.6	99

#	Article	IF	CITATIONS
109	Contributions of Thalamic Nuclei to Declarative Memory Functioning. Cortex, 2003, 39, 1047-1062.	2.4	224
110	Amygdala Input Promotes Spread of Excitatory Neural Activity From Perirhinal Cortex to the Entorhinal–Hippocampal Circuit. Journal of Neurophysiology, 2003, 89, 2176-2184.	1.8	85
111	Memory impairment in temporal lobe epilepsy: the role of entorhinal lesions. Epilepsy Research, 2002, 50, 161-177.	1.6	64
112	Intrinsic connectivity of the rat subiculum: I. Dendritic morphology and patterns of axonal arborization by pyramidal neurons. Journal of Comparative Neurology, 2001, 435, 490-505.	1.6	74
113	Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus, 2001, 11, 99-104.	1.9	198
114	Evidence for a direct projection from the postrhinal cortex to the subiculum in the rat. Hippocampus, 2001, 11, 105-117.	1.9	65
115	Calretinin in the entorhinal cortex of the rat: Distribution, morphology, ultrastructure of neurons, and co-localization with ?-aminobutyric acid and parvalbumin. Journal of Comparative Neurology, 2000, 425, 177-192.	1.6	61
116	Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus, 2000, 10, 398-410.	1.9	323
117	Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia, 2000, 38, 613-627.	1.6	319
118	Nucleus reuniens thalami innervates \hat{I}^3 aminobutyric acid positive cells in hippocampal field CA1 of the rat. Neuroscience Letters, 2000, 278, 145-148.	2.1	65
119	Anatomical Organization of the Parahippocampalâ€Hippocampal Network. Annals of the New York Academy of Sciences, 2000, 911, 1-24.	3.8	444
120	Presubicular Input to the Dendrites of Layerâ€V Entorhinal Neurons in the Rat. Annals of the New York Academy of Sciences, 2000, 911, 471-473.	3.8	18
121	Corticoâ€hippocampal communication by way of parallel parahippocampalâ€subicular pathways. Hippocampus, 2000, 10, 398-410.	1.9	11
122	The medial dorsal nucleus of the thalamus is not part of a hippocampal-thalamic memory system. Behavioral and Brain Sciences, 1999, 22, 467-468.	0.7	3
123	Perirhinal cortex does not project to the dentate gyrus. , 1999, 9, 605-606.		17
124	Parametric fMRI analysis of visual encoding in the human medial temporal lobe. , 1999, 9, 637-643.		41
125	Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. , 1998, 7, 146-183.		384
126	Parallel input to the hippocampal memory system through peri- and postrhinal cortices. NeuroReport, 1997, 8, 2617-2621.	1.2	141

#	Article	IF	CITATIONS
127	GABAergic Presubicular Projections to the Medial Entorhinal Cortex of the Rat. Journal of Neuroscience, 1997, 17, 862-874.	3.6	70
128	Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex. Hippocampus, 1997, 7, 397-402.	1.9	135
129	Visual association encoding activates the medial temporal lobe: A functional magnetic resonance imaging study. Hippocampus, 1997, 7, 594-601.	1.9	134
130	Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex. Hippocampus, 1997, 7, 397-402.	1.9	4
131	Visual association encoding activates the medial temporal lobe: A functional magnetic resonance imaging study. Hippocampus, 1997, 7, 594-601.	1.9	2
132	Perirhinal and postrhinal cortices of the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus, 1995, 5, 390-408.	1.9	516
133	Quantitative morphological analysis of subicular terminals in the rat entorhinal cortex. Hippocampus, 1995, 5, 452-459.	1.9	33
134	Parvalbumin-immunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure. Journal of Neurocytology, 1995, 24, 135-153.	1.5	115
135	Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat. Experimental Brain Research, 1994, 101, 93-108.	1.5	78
136	Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: An anterograde tracing study in the rat. Journal of Comparative Neurology, 1993, 328, 115-129.	1.6	389
137	Morphological and functional correlates of borders in the entorhinal cortex and hippocampus. Hippocampus, 1993, 3, 303-311.	1.9	39
138	Organization of the entorhinal—hippocampal system: A review of current anatomical data. Hippocampus, 1993, 3, 33-44.	1.9	472
139	Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. Journal of Comparative Neurology, 1991, 307, 437-459.	1.6	438
140	Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport ofPhaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology, 1991, 313, 574-586.	1.6	770
141	Heterogeneity in the Dorsal Subiculum of the Rat. Distinct Neuronal Zones Project to Different Cortical and Subcortical Targets. European Journal of Neuroscience, 1990, 2, 718-725.	2.6	156
142	Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracerPhaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology, 1990, 296, 179-203.	1.6	294
143	Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. Journal of Comparative Neurology, 1986, 252, 1-31.	1.6	124
144	Connections of the parahippocampal cortex in the cat. IV. Subcortical efferents. Journal of Comparative Neurology, 1986, 252, 51-77.	1.6	69

#	Article	IF	CITATIONS
145	Connections of the parahippocampal cortex in the cat. V. Intrinsic connections; comments on input/output connections with the hippocampus. Journal of Comparative Neurology, 1986, 252, 78-94.	1.6	101
146	Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. Journal of Comparative Neurology, 1984, 224, 371-385.	1.6	162
147	Postnatal development of projections of the postrhinal cortex to the entorhinal cortex in the rat. ENeuro, 0, , ENEURO.0057-22.2022.	1.9	2