
Stefan Hans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7315977/publications.pdf Version: 2024-02-01

STEEAN HANS

#	Article	IF	CITATIONS
1	Wnt/ \hat{I}^2 -catenin signaling acts cell-autonomously to promote cardiomyocyte regeneration in the zebrafish heart. Developmental Biology, 2022, 481, 226-237.	2.0	16
2	Reactivation of the Neurogenic Niche in the Adult Zebrafish Statoacoustic Ganglion Following a Mechanical Lesion. Frontiers in Cell and Developmental Biology, 2022, 10, 850624.	3.7	1
3	Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish. Nature Communications, 2021, 12, 1125.	12.8	29
4	Deletion of Irrk2 causes early developmental abnormalities and age-dependent increase of monoamine catabolism in the zebrafish brain. PLoS Genetics, 2021, 17, e1009794.	3.5	5
5	Cell-fate plasticity, adhesion and cell sorting complementarily establish a sharp midbrain-hindbrain boundary. Development (Cambridge), 2020, 147, .	2.5	11
6	Neurogenesis in the inner ear: the zebrafish statoacoustic ganglion provides new neurons from a Neurod/Nestin-positive progenitor pool well into adulthood. Development (Cambridge), 2020, 147, .	2.5	5
7	Targeted knock-in of CreER T2 in zebrafish using CRISPR/Cas9. Cell and Tissue Research, 2018, 372, 41-50.	2.9	33
8	Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration. Development (Cambridge), 2017, 144, 1462-1471.	2.5	61
9	Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development. Biology Open, 2017, 6, 1270-1278.	1.2	9
10	Ligand-Controlled Site-Specific Recombination in Zebrafish. Methods in Molecular Biology, 2017, 1642, 87-97.	0.9	3
11	Creâ€inducible siteâ€specific recombination in zebrafish oligodendrocytes. Developmental Dynamics, 2017, 246, 41-49.	1.8	15
12	Clonal fate mapping quantifies the number ofÂhaematopoietic stem cells that arise duringÂdevelopment. Nature Cell Biology, 2017, 19, 17-27.	10.3	90
13	Generation of a conditional <i>lima1a</i> allele in zebrafish using the <scp>FLE</scp> x switch technology. Genesis, 2016, 54, 19-28.	1.6	4
14	Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach. PLoS ONE, 2015, 10, e0129072.	2.5	19
15	Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development (Cambridge), 2013, 140, 1936-1945.	2.5	29
16	Notch Receptor Expression in Neurogenic Regions of the Adult Zebrafish Brain. PLoS ONE, 2013, 8, e73384.	2.5	33
17	Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development (Cambridge), 2011, 138, 4831-4841.	2.5	390
18	Bone Regenerates via Dedifferentiation of Osteoblasts in the Zebrafish Fin. Developmental Cell, 2011, 20, 713-724.	7.0	346

Stefan Hans

#	Article	IF	CITATIONS
19	Generation of a nonâ€leaky heat shock–inducible Cre line for conditional Cre/lox strategies in zebrafish. Developmental Dynamics, 2011, 240, 108-115.	1.8	93
20	Stem Cells in the Adult Zebrafish Cerebellum: Initiation and Maintenance of a Novel Stem Cell Niche. Journal of Neuroscience, 2009, 29, 6142-6153.	3.6	183
21	Temporally-Controlled Site-Specific Recombination in Zebrafish. PLoS ONE, 2009, 4, e4640.	2.5	182
22	Smarcd3 Regulates the Timing of Zebrafish Myogenesis Onset. Journal of Biological Chemistry, 2008, 283, 3529-3536.	3.4	22
23	Changes in retinoic acid signaling alter otic patterning. Development (Cambridge), 2007, 134, 2449-2458.	2.5	47
24	Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC Developmental Biology, 2007, 7, 5.	2.1	78
25	Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dlx3b transcription factors. Development (Cambridge), 2004, 131, 5091-5102.	2.5	116
26	On the organisation of the regulatory region of the zebrafish <i>deltaD</i> gene. Development (Cambridge), 2002, 129, 4773-4784.	2.5	24