Florent Allagnat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/731369/publications.pdf

Version: 2024-02-01

46 papers 1,687

236925 25 h-index 289244 40 g-index

66 all docs

66 docs citations

66 times ranked 2550 citing authors

#	Article	IF	CITATIONS
1	Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia, 2012, 55, 2417-2420.	6.3	195
2	C/EBP homologous protein contributes to cytokine-induced pro-inflammatory responses and apoptosis in \hat{l}^2 -cells. Cell Death and Differentiation, 2012, 19, 1836-1846.	11.2	114
3	Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to \hat{l}^2 -cell apoptosis. Cell Death and Differentiation, 2011, 18, 328-337.	11.2	107
4	Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia, 2010, 53, 1120-1130.	6.3	103
5	Store-operated Ca2+ Entry Mediated by Orai1 and TRPC1 Participates to Insulin Secretion in Rat \hat{l}^2 -Cells. Journal of Biological Chemistry, 2015, 290, 30530-30539.	3.4	71
6	Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Journal of Molecular Endocrinology, 2016, 57, R1-R17.	2.5	70
7	HDLs Protect Pancreatic \hat{l}^2 -Cells Against ER Stress by Restoring Protein Folding and Trafficking. Diabetes, 2012, 61, 1100-1111.	0.6	63
8	Connexins protect mouse pancreatic \hat{l}^2 cells against apoptosis. Journal of Clinical Investigation, 2011, 121, 4870-4879.	8.2	61
9	Differential usage of NFâ€₽B activating signals by ILâ€1β and TNFâ€Î± in pancreatic beta cells. FEBS Letters, 2012 586, 984-989.	''2.8	58
10	Dysfunctional autophagy following exposure to pro-inflammatory cytokines contributes to pancreatic \hat{l}^2 -cell apoptosis. Cell Death and Disease, 2018, 9, 96.	6.3	55
11	Glucose represses connexin36 in insulin-secreting cells. Journal of Cell Science, 2005, 118, 5335-5344.	2.0	54
12	Exposure to the Viral By-Product dsRNA or Coxsackievirus B5 Triggers Pancreatic Beta Cell Apoptosis via a Bim / Mcl-1 Imbalance. PLoS Pathogens, 2011, 7, e1002267.	4.7	52
13	Hydrogen sulfide-releasing peptide hydrogel limits the development of intimal hyperplasia in human vein segments. Acta Biomaterialia, 2019, 97, 374-384.	8.3	50
14	Role of microRNAs in the age-associated decline of pancreatic beta cell function in rat islets. Diabetologia, 2016, 59, 161-169.	6.3	44
15	Functional significance of repressor element 1 silencing transcription factor (REST) target genes in pancreatic beta cells. Diabetologia, 2008, 51, 1429-1439.	6.3	43
16	ICER- $1\hat{1}^3$ Overexpression Drives Palmitate-mediated Connexin36 Down-regulation in Insulin-secreting Cells. Journal of Biological Chemistry, 2008, 283, 5226-5234.	3.4	43
17	The use of external mesh reinforcement to reduce intimal hyperplasia and preserve the structure of human saphenous veins. Biomaterials, 2014, 35, 2588-2599.	11.4	41
18	Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 60-68.	0.7	35

#	Article	IF	CITATIONS
19	Connexin37 reduces smooth muscle cell proliferation and intimal hyperplasia in a mouse model of carotid artery ligation. Cardiovascular Research, 2017, 113, 805-816.	3.8	34
20	Plasma Membrane Ca2+-ATPase Overexpression Depletes Both Mitochondrial and Endoplasmic Reticulum Ca2+ Stores and Triggers Apoptosis in Insulin-secreting BRIN-BD11 Cells. Journal of Biological Chemistry, 2010, 285, 30634-30643.	3.4	33
21	Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfunction evoked by oxidative stress in human and rat islets. Diabetologia, 2011, 54, 2337-2346.	6.3	30
22	Targeting Cx40 (Connexin40) Expression or Function Reduces Angiogenesis in the Developing Mouse Retina. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2136-2146.	2.4	29
23	Connexins, Diabetes and the Metabolic Syndrome. Current Protein and Peptide Science, 2009, 10, 18-29.	1.4	28
24	Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca2+Signaling in Mouse Aortic Endothelium. Cellular Physiology and Biochemistry, 2013, 31, 166-178.	1.6	28
25	Connexin36 contributes to INS-1E cells survival through modulation of cytokine-induced oxidative stress, ER stress and AMPK activity. Cell Death and Differentiation, 2013, 20, 1742-1752.	11.2	27
26	Hyperglycemia downregulates Connexin36 in pancreatic islets via the upregulation of ICER-1/ICER- $1\hat{1}^3$. Journal of Molecular Endocrinology, 2013, 51, 49-58.	2.5	27
27	Heterozygous Inactivation of the Na/Ca Exchanger Increases Glucose-Induced Insulin Release, \hat{l}^2 -Cell Proliferation, and Mass. Diabetes, 2011, 60, 2076-2085.	0.6	26
28	Role of Connexins and Pannexins in the Pancreas. Pancreas, 2015, 44, 1234-1244.	1.1	21
29	Nitric Oxide Deficit Drives Intimal Hyperplasia in Mouse Models of Hypertension. European Journal of Vascular and Endovascular Surgery, 2016, 51, 733-742.	1.5	21
30	Reduction of Connexin36 Content by ICER-1 Contributes to Insulin-Secreting Cells Apoptosis Induced by Oxidized LDL Particles. PLoS ONE, 2013, 8, e55198.	2.5	19
31	Specific Silencing of the REST Target Genes in Insulin-Secreting Cells Uncovers Their Participation in Beta Cell Survival. PLoS ONE, 2012, 7, e45844.	2.5	15
32	Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation. EBioMedicine, 2022, 78, 103954.	6.1	15
33	Store-operated Ca2+ entry: a key component of the insulin secretion machinery. Journal of Molecular Endocrinology, 2016, 57, F35-F39.	2.5	14
34	Cx36 Is a Target of Beta2/NeuroD1, Which Associates with Prenatal Differentiation of Insulin-producing \hat{I}^2 Cells. Journal of Membrane Biology, 2012, 245, 263-273.	2.1	11
35	Connexin43 Inhibition Prevents Human Vein Grafts Intimal Hyperplasia. PLoS ONE, 2015, 10, e0138847.	2.5	11
36	Targeting connexin37 alters angiogenesis and arteriovenous differentiation in the developing mouse retina. FASEB Journal, 2020, 34, 8234-8249.	0.5	10

3

#	Article	IF	CITATIONS
37	Hydrogen Sulphide Release via the Angiotensin Converting Enzyme Inhibitor Zofenopril Prevents Intimal Hyperplasia in Human Vein Segments and in a Mouse Model of Carotid Artery Stenosis. European Journal of Vascular and Endovascular Surgery, 2022, 63, 336-346.	1.5	10
38	Cellular effects of AP102, a somatostatin analog with balanced affinities for the hSSTR2 and hSSTR5 receptors. Neuropeptides, 2018, 68, 84-89.	2.2	4
39	Clinical Use of Hydrogen Sulfide to Protect Against Intimal Hyperplasia. Frontiers in Cardiovascular Medicine, 2022, 9, 876639.	2.4	4
40	Procedure for Human Saphenous Veins Ex Vivo Perfusion and External Reinforcement. Journal of Visualized Experiments, 2014, , e52079.	0.3	3
41	Connexins and Secretion., 2009, , 511-527.		3
42	Abstract 323: Hydrogen Sulfide Limits the Development of Intimal Hyperplasia in a Mouse Model of Femoral Wire Injury and in Human Veins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	1
43	Stapled Porcine Pericardium Displays Lower Infectivity InÂVitro Than Native and Sutured Porcine Pericardium. Journal of Surgical Research, 2022, 272, 132-138.	1.6	1
44	Store-Operated Ca2+ Entry Mediated by Orai1 and TRPC1 Participates to Insulin Secretion in Rat \hat{l}^2 -Cells. Biophysical Journal, 2016, 110, 610a.	0.5	0
45	Sodium Thiosulphate, a Source of Hydrogen Sulphide, Promotes Angiogenesis Via Metabolic Reprogramming of Endothelial Cells. European Journal of Vascular and Endovascular Surgery, 2022, 63, e40-e41.	1.5	0
46	Title is missing!. , 2013, 8, e55198.		0