
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/73136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	12.6	1,424
2	Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface. Science, 2011, 333, 1279-1282.	12.6	501
3	High Speed Atomic Force Microscopy Visualizes Processive Movement of Trichoderma reesei Cellobiohydrolase I on Crystalline Cellulose. Journal of Biological Chemistry, 2009, 284, 36186-36190.	3.4	259
4	Comparative genomics of <i>Ceriporiopsis subvermispora</i> and <i>Phanerochaete chrysosporium</i> provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5458-5463.	7.1	259
5	The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose. PLoS ONE, 2011, 6, e27807.	2.5	226
6	Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium. Journal of Biological Chemistry, 2013, 288, 12828-12839.	3.4	158
7	Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS Journal, 2007, 274, 1785-1792.	4.7	135
8	Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics, 2012, 13, 444.	2.8	125
9	Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase. Carbohydrate Research, 2009, 344, 2468-2473.	2.3	117
10	Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia, 2013, 105, 1412-1427.	1.9	110
11	Molecular Cloning of a β-Galactosidase from Radish That Specifically Hydrolyzes β-(1→3)- and β-(1→6)-Galactosyl Residues of Arabinogalactan Protein. Plant Physiology, 2005, 138, 1563-1576.	4.8	100
12	Temporal Alterations in the Secretome of the Selective Ligninolytic Fungus Ceriporiopsis subvermispora during Growth on Aspen Wood Reveal This Organism's Strategy for Degrading Lignocellulose. Applied and Environmental Microbiology, 2014, 80, 2062-2070.	3.1	99
13	Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Letters, 1998, 432, 113-116.	2.8	98
14	A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Applied and Environmental Microbiology, 2016, 82, 6557-6572.	3.1	97
15	Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood. PLoS Genetics, 2014, 10, e1004759.	3.5	90
16	Characterization of an Endoglucanase Belonging to a New Subfamily of Glycoside Hydrolase Family 45 of the Basidiomycete <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 2008, 74, 5628-5634.	3.1	83
17	Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nature Communications, 2014, 5, 3975.	12.8	82
18	Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition. FEBS Journal, 1998, 253, 101-106.	0.2	80

#	Article	IF	CITATIONS
19	"Newton's cradle―proton relay with amide–imidic acid tautomerization in inverting cellulase visualized by neutron crystallography. Science Advances, 2015, 1, e1500263.	10.3	80
20	An Exo-β-1,3-galactanase Having a Novel β-1,3-Galactan-bindingModule from Phanerochaetechrysosporium. Journal of Biological Chemistry, 2005, 280, 25820-25829.	3.4	79
21	The Tryptophan Residue at the Active Site Tunnel Entrance of Trichoderma reesei Cellobiohydrolase Cel7A ls Important for Initiation of Degradation of Crystalline Cellulose. Journal of Biological Chemistry, 2013, 288, 13503-13510.	3.4	77
22	Trade-off between Processivity and Hydrolytic Velocity of Cellobiohydrolases at the Surface of Crystalline Cellulose. Journal of the American Chemical Society, 2014, 136, 4584-4592.	13.7	77
23	Cellobiose Dehydrogenase from the Fungi Phanerochaete chrysosporium and Humicola insolens. Journal of Biological Chemistry, 1999, 274, 3338-3344.	3.4	72
24	Kinetics of inter-domain electron transfer in flavocytochrome cellobiose dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Biochemical Journal, 2002, 365, 521-526.	3.7	69
25	Surface density of cellobiohydrolase on crystalline celluloses FEBS Journal, 2006, 273, 2869-2878.	4.7	69
26	Crystal structure of a feruloyl esterase belonging to the tannase family: A disulfide bond near a catalytic triad. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2857-2867.	2.6	68
27	The Role of Active Site Glutamate Residues in Catalysis of Rhodobacter capsulatus Xanthine Dehydrogenase. Journal of Biological Chemistry, 2004, 279, 40437-40444.	3.4	67
28	High-speed atomic force microscope combined with single-molecule fluorescence microscope. Review of Scientific Instruments, 2013, 84, 073706.	1.3	65
29	Discovery of a Eukaryotic Pyrroloquinoline Quinone-Dependent Oxidoreductase Belonging to a New Auxiliary Activity Family in the Database of Carbohydrate-Active Enzymes. PLoS ONE, 2014, 9, e104851.	2.5	65
30	Biocatalytic oxidation of cellobiose in an hydrated ionic liquid. Green Chemistry, 2009, 11, 351-354.	9.0	63
31	The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide. Scientific Reports, 2017, 7, 46099.	3.3	60
32	Production and Characterization of Recombinant Phanerochaete chrysosporium Cellobiose Dehydrogenase in the Methylotrophic Yeast Pichia pastoris. Bioscience, Biotechnology and Biochemistry, 2001, 65, 2050-2057.	1.3	58
33	Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2006, 73, 807-814.	3.6	57
34	Direct Electrochemistry of Phanerochaete chrysosporium Cellobiose Dehydrogenase Covalently Attached onto Gold Nanoparticle Modified Solid Gold Electrodes. Langmuir, 2012, 28, 10925-10933.	3.5	55
35	Enzymatic hydrolysis of bacterial cellulose. Carbohydrate Research, 1997, 305, 281-288.	2.3	54
36	Properties of family 79 β-glucuronidases that hydrolyze β-glucuronosyl and 4-O-methyl-β-glucuronosyl residues of arabinogalactan-protein. Carbohydrate Research, 2008, 343, 1191-1201.	2.3	54

#	Article	IF	CITATIONS
37	Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2006, 71, 898-906.	3.6	52
38	Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1→3)-β-glucosidase from the white-rot fungus Phanerochaete chrysosporium. Carbohydrate Research, 2004, 339, 2851-2857.	2.3	51
39	Effect of Deglycosylation of Cellobiose Dehydrogenases on the Enhancement of Direct Electron Transfer with Electrodes. Analytical Chemistry, 2012, 84, 10315-10323.	6.5	51
40	Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiology Letters, 2011, 321, 14-23.	1.8	50
41	Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose II± and IIII. Journal of Biological Chemistry, 2014, 289, 14056-14065.	3.4	50
42	Family 3 β-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-β-glucosidase. Journal of Bioscience and Bioengineering, 2003, 95, 572-576.	2.2	48
43	Crystal Structure of Glycoside Hydrolase Family 55 β-1,3-Glucanase from the Basidiomycete Phanerochaete chrysosporium. Journal of Biological Chemistry, 2009, 284, 10100-10109.	3.4	48
44	Characterization of a Novel PQQ-Dependent Quinohemoprotein Pyranose Dehydrogenase from Coprinopsis cinerea Classified into Auxiliary Activities Family 12 in Carbohydrate-Active Enzymes. PLoS ONE, 2015, 10, e0115722.	2.5	48
45	Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. FEBS Journal, 2005, 272, 2869-2877.	4.7	46
46	Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete <i>Phanerochaete chrysosporium</i> . FEBS Journal, 2007, 274, 5727-5736.	4.7	45
47	Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose. Journal of Biological Chemistry, 2016, 291, 22404-22413.	3.4	45
48	Cellotriose and Cellotetraose as Inducers of the Genes Encoding Cellobiohydrolases in the Basidiomycete <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 2010, 76, 6164-6170.	3.1	44
49	An Â-L-arabinofuranosidase/Â-D-xylosidase from immature seeds of radish (Raphanus sativus L.). Journal of Experimental Botany, 2006, 57, 2353-2362.	4.8	43
50	Crystal structure of intracellular family 1 β-glucosidase BGL1A from the basidiomycetePhanerochaete chrysosporium. FEBS Letters, 2007, 581, 1514-1520.	2.8	42
51	Cellulose affinity purification of fusion proteins tagged with fungal family 1 cellulose-binding domain. Protein Expression and Purification, 2012, 82, 290-296.	1.3	42
52	A novel combined thermometric and amperometric biosensor for lactose determination based on immobilised cellobiose dehydrogenase. Biosensors and Bioelectronics, 2012, 31, 251-256.	10.1	42
53	Crystal structure of polysaccharide lyase family 20 endoâ€Î²â€1,4â€glucuronan lyase from the filamentous fungus <i>Trichoderma reesei</i> . FEBS Letters, 2009, 583, 1323-1326.	2.8	39
54	Production and Characterization of RecombinantPhanerochaete chrysosporiumβ-Glucosidase in the Methylotrophic YeastPichia pastoris. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1-7.	1.3	38

#	Article	IF	CITATIONS
55	Endo-β-1,3-galactanase from Winter Mushroom Flammulina velutipes. Journal of Biological Chemistry, 2011, 286, 27848-27854.	3.4	38
56	Application of ammonia pretreatment to enable enzymatic hydrolysis of hardwood biomass. Polymer Degradation and Stability, 2018, 148, 19-25.	5.8	37
57	Degradation of carbohydrate moieties of arabinogalactan-proteins by glycoside hydrolases from Neurospora crassa. Carbohydrate Research, 2010, 345, 2516-2522.	2.3	36
58	Characterization of Carbohydrate-Binding Cytochrome b 562 from the White-Rot Fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 2005, 71, 4548-4555.	3.1	34
59	Molecular cloning and characterization of a cDNA encoding cellobiose dehydrogenase from the wood-rotting fungusGrifola frondosa. FEMS Microbiology Letters, 2002, 217, 225-230.	1.8	33
60	Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi. FEBS Letters, 2013, 587, 3556-3561.	2.8	33
61	The two-step electrochemical oxidation of alcohols using a novel recombinant PQQ alcohol dehydrogenase as a catalyst for a bioanode. Bioelectrochemistry, 2013, 94, 75-78.	4.6	32
62	Differential transcription of \$beta;-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycete Phanerochaete chrysosporium. FEMS Microbiology Letters, 2004, 235, 177-182.	1.8	31
63	Two Mutations Convert Mammalian Xanthine Oxidoreductase to Highly Superoxide-productive Xanthine Oxidase. Journal of Biochemistry, 2007, 141, 525-534.	1.7	31
64	Convergent evolution of processivity in bacterial and fungal cellulases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19896-19903.	7.1	31
65	Differential transcription of β-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycetePhanerochaete chrysosporium. FEMS Microbiology Letters, 2004, 235, 177-182.	1.8	30
66	Cloning of the <i>Trichoderma reesei</i> cDNA Encoding a Glucuronan Lyase Belonging to a Novel Polysaccharide Lyase Family. Applied and Environmental Microbiology, 2009, 75, 101-107.	3.1	30
67	Xâ€ray crystal structures of <i>Phanerochaete chrysosporium</i> Laminarinase 16A in complex with products from lichenin and laminarin hydrolysis. FEBS Journal, 2009, 276, 3858-3869.	4.7	30
68	Localization of Cellobiose Dehydrogenase in Cellulose-Grown Cultures ofPhanerochaete chrysosporium. Fungal Genetics and Biology, 1997, 21, 214-222.	2.1	29
69	Real-time quantitative analysis of carbon catabolite derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2008, 80, 99-106.	3.6	29
70	Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by <i>Coprinopsisâ€∫cinerea</i> . FEBS Journal, 2010, 277, 1532-1542.	4.7	28
71	Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis. Chemical Science, 2017, 8, 6561-6565.	7.4	26
72	Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis. Applied and Environmental Microbiology, 2017, 83, .	3.1	25

#	Article	IF	CITATIONS
73	Visualization of Cellobiohydrolase I from Trichoderma reesei Moving on Crystalline Cellulose Using High-Speed Atomic Force Microscopy. Methods in Enzymology, 2012, 510, 169-182.	1.0	24
74	Improvement of Enzymatic Saccharification of Unbleached Cedar Pulp with Amphipathic Lignin Derivatives. BioResources, 2013, 8, .	1.0	24
75	An amperometric biosensor of L-fucose in urine for the first screening test of cancer. Biosensors and Bioelectronics, 2021, 174, 112831.	10.1	24
76	Gene Cloning and Heterologous Expression of Glycoside Hydrolase Family 55 β-1,3-Glucanase from the Basidiomycete Phanerochaete Chrysosporium. Biotechnology Letters, 2006, 28, 365-371.	2.2	23
77	Synthesis of Cyclic β-Glucan Using Laminarinase 16A Glycosynthase Mutant from the Basidiomycete Phanerochaete chrysosporium. Journal of the American Chemical Society, 2010, 132, 1724-1730.	13.7	22
78	Structural and Biochemical Analyses of Glycoside Hydrolase Family 26 β-Mannanase from a Symbiotic Protist of the Termite Reticulitermes speratus. Journal of Biological Chemistry, 2014, 289, 10843-10852.	3.4	22
79	Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris. Biotechnology for Biofuels, 2016, 9, 199.	6.2	22
80	Fungal PQQ-dependent dehydrogenases and their potential in biocatalysis. Current Opinion in Chemical Biology, 2019, 49, 113-121.	6.1	22
81	Adsorption Characteristics of Fungal Family 1 Cellulose-Binding Domain from Trichoderma reesei Cellobiohydrolase I on Crystalline Cellulose: Negative Cooperative Adsorption via a Steric Exclusion Effect. Langmuir, 2012, 28, 14323-14329.	3.5	21
82	A Novel Pyrroloquinoline Quinone-Dependent 2-Keto- <scp>d</scp> -Glucose Dehydrogenase from Pseudomonas aureofaciens. Journal of Bacteriology, 2015, 197, 1322-1329.	2.2	21
83	Electrochemical analysis of electrode-immobilized dehydrogenases in hydrated choline dihydrogen phosphate-type ionic liquid. Electrochimica Acta, 2011, 56, 7224-7227.	5.2	19
84	Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua. Journal of Biological Chemistry, 2018, 293, 8812-8828.	3.4	19
85	Characterization and molecular cloning of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana. Journal of Bioscience and Bioengineering, 2004, 98, 57-63.	2.2	18
86	Cooperative biomass breakdown. Nature Chemical Biology, 2013, 9, 350-351.	8.0	18
87	Multi-enzyme anode composed of FAD-dependent and NAD-dependent enzymes with a single ruthenium polymer mediator for biofuel cells. Electrochemistry Communications, 2015, 56, 75-78.	4.7	18
88	pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase. Biochemical and Biophysical Research Communications, 2016, 477, 369-373.	2.1	18
89	Purification, identification and molecular cloning of glycoside hydrolase family 15 glucoamylase from the brown-rot basidiomyceteFomitopsis palustris. FEMS Microbiology Letters, 2006, 259, 288-294.	1.8	17
90	Protein components of water extracts from fruiting bodies of the reishi mushroom <i>Ganoderma lucidum</i> contribute to the production of functional molecules. Journal of the Science of Food and Agriculture, 2019, 99, 529-535.	3.5	17

#	Article	IF	CITATIONS
91	Crystal Structure of the Catalytic and Cytochrome <i>b</i> Domains in a Eukaryotic Pyrroloquinoline Quinone-Dependent Dehydrogenase. Applied and Environmental Microbiology, 2019, 85, .	3.1	17
92	The GH26 β-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: Heterologous expression and characterization. Biochemical and Biophysical Research Communications, 2014, 452, 520-525.	2.1	16
93	Degradation of Crystalline Celluloses by Phanerochaete chrysosporium Cellobiohydrolase II (Cel6A) Heterologously Expressed in Methylotrophic Yeast Pichia pastoris. Journal of Applied Glycoscience (1999), 2012, 59, 105-110.	0.7	16
94	<i>In Vitro</i> Synthesis and Self-Assembly of Cellulose II Nanofibrils Catalyzed by the Reverse Reaction of <i>Clostridium thermocellum</i> Cellodextrin Phosphorylase. Biomacromolecules, 2020, 21, 4355-4364.	5.4	15
95	Phase-diagram-guided method for growth of a large crystal of glycoside hydrolase family 45 inverting cellulase suitable for neutron structural analysis. Journal of Synchrotron Radiation, 2013, 20, 859-863.	2.4	14
96	X-ray crystallographic native sulfur SAD structure determination of laminarinase Lam16A fromPhanerochaete chrysosporium. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1422-1429.	2.5	13
97	Characterization of Glycoside Hydrolase Family 6 Enzymes from <i>Coprinopsis cinerea</i> . Bioscience, Biotechnology and Biochemistry, 2009, 73, 1432-1434.	1.3	13
98	Enzymes Suitable for Biorefinery to Coproduce Hexaric Acids and Electricity from Hexuronic Acids Derived from Biomass. Energy Technology, 2018, 6, 273-279.	3.8	13
99	Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 βâ€glucosidase BGL1A from the basidiomycete <i>Phanerochaete chrysosporium</i> . Biotechnology and Bioengineering, 2008, 99, 1295-1302.	3.3	12
100	Transcriptional Response of the Cellobiose Dehydrogenase Gene to Cello- and Xylooligosaccharides in the Basidiomycete Phanerochaete chrysosporium. Applied and Environmental Microbiology, 2012, 78, 3770-3773.	3.1	12
101	Preparation and enzymatic behavior of surfactant-enveloped enzymes for glycosynthesis in nonaqueous aprotic media. Journal of Molecular Catalysis B: Enzymatic, 2010, 67, 225-230.	1.8	11
102	Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases. Journal of Biological Chemistry, 2020, 295, 14606-14617.	3.4	11
103	Inhibition ofTrichoderma cellulase activity by a stilbene glucoside fromPicea glehnii bark. Journal of Wood Science, 2001, 47, 135-140.	1.9	10
104	The genes encoding glycoside hydrolase family 6 and 7 cellulases from the brown-rot fungus Coniophora puteana. Journal of Wood Science, 2009, 55, 376-380.	1.9	10
105	Quantitative transcriptional analysis of the genes encoding glycoside hydrolase family 7 cellulase isozymes in the basidiomycete <i>Phanerochaete chrysosporium</i> . FEMS Microbiology Letters, 2009, 299, 159-165.	1.8	10
106	First aid for flood-damaged paper using saltwater: The inhibiting effect of saltwater on mold growth. Studies in Conservation, 2012, 57, 164-171.	1.1	10
107	Degradation pathway of plant complex-type N-glycans: identification and characterization of a key α1,3-fucosidase from glycoside hydrolase family 29. Biochemical Journal, 2018, 475, 305-317.	3.7	10
108	Discovery of a novel quinohemoprotein from a eukaryote and its application in electrochemical devices. Bioelectrochemistry, 2020, 131, 107372.	4.6	10

#	Article	IF	CITATIONS
109	Bioelectrocatalysis based on direct electron transfer of fungal pyrroloquinoline quinone-dependent dehydrogenase lacking the cytochrome domain. Electrochimica Acta, 2020, 359, 136982.	5.2	10
110	Pyrroloquinoline quinone-dependent glucose dehydrogenase anode: d-Galacturonic acid oxidation and galactaric acid production. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S76-S79.	1.8	9
111	Crystallization of selenomethionyl exo-β-1,3-galactanase from the basidiomycete <i>Phanerochaete chrysosporium</i> . Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1274-1276.	0.7	8
112	Real-Time Dynamic Adsorption Processes of Cytochrome c on an Electrode Observed through Electrochemical High-Speed Atomic Force Microscopy. PLoS ONE, 2015, 10, e0116685.	2.5	8
113	Enhanced Self-Assembly and Mechanical Properties of Cellulose-Based Triblock Copolymers: Comparisons with Amylose-Based Triblock Copolymers. ACS Sustainable Chemistry and Engineering, 2021, 9, 9779-9788.	6.7	8
114	Crystal structure of a family 6 cellobiohydrolase from the basidiomycete <i>Phanerochaete chrysosporium</i> . Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 398-403.	0.8	8
115	Secretome analysis of the basidiomycete Phanerochaete chrysosporium grown on ammonia-treated lignocellulosic biomass from birch wood. Journal of Wood Science, 2018, 64, 845-853.	1.9	7
116	Bridging the Micro-Macro Gap between Single-Molecular Behavior and Bulk Hydrolysis Properties of Cellulase. Physical Review Letters, 2019, 122, 098102.	7.8	7
117	Structural analysis of βâ€Lâ€arabinobioseâ€binding protein in the metabolic pathway of hydroxyprolineâ€rich glycoproteins inBifidobacterium longum. FEBS Journal, 2020, 287, 5114-5129.	4.7	7
118	Family 3 .BETAGlucosidase from Cellulose-Degrading Culture of the White-Rot Fungus Phanerochaete chysosporium is a Glucan 1,3BETAGlucosidase. Journal of Bioscience and Bioengineering, 2003, 95, 572-576.	2.2	7
119	Comparison of Glycoside Hydrolase family 3 β-xylosidases from basidiomycetes and ascomycetes reveals evolutionarily distinct xylan degradation systems. Journal of Biological Chemistry, 2022, , 101670.	3.4	7
120	Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus <i>Phanerochaete chrysosporium</i> . Journal of Applied Glycoscience (1999), 2022, 69, 35-43.	0.7	7
121	The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiae. FEMS Yeast Research, 2020, 20, .	2.3	6
122	Strategies towards Reduction of Enzyme Cost for Ethanol Production from Cellulosic Biomass. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 964-972.	0.2	5
123	Association of amphipathic lignin derivatives with cellobiohydrolase groups improves enzymatic saccharification of lignocellulosics. Cellulose, 2017, 24, 1849-1862.	4.9	5
124	Kinetic Analysis of Cellobiohydrolase: Quantification of Enzymatic Reaction at a Solid/Liquid Interface Applying the Concept of Surface Density. Trends in Glycoscience and Glycotechnology, 2009, 21, 13-22.	0.1	5
125	Enzymatic synthesis of cellulose in space: gravity is a crucial factor for building cellulose II gel structure. Cellulose, 2022, 29, 2999-3015.	4.9	5
126	Evaluation of Ammonia Pretreatment for Enzymatic Hydrolysis of Sugarcane Bagasse to Recover Xylooligosaccharides. Journal of Applied Glycoscience (1999), 2020, 67, 17-22.	0.7	4

KIYOHIKO IGARASHI

#	Article	IF	CITATIONS
127	Molecular cloning of cDNAs encoding two glycoside hydrolase family 7 cellobiohydrolases from the basidiomycete Flammulina velutipes. Plant Biotechnology, 2010, 27, 273-281.	1.0	4
128	Identification of basidiomycetes in decayed wood by a method using non-specific amplification of DNA. MOKUZAI HOZON (Wood Protection), 2009, 35, 57-65.	0.0	4
129	Mutation of cysteine residues increases heterologous expression of peach expansin in the methylotrophic yeast <i>Pichia pastoris</i> . Plant Biotechnology, 2020, 37, 397-403.	1.0	4
130	Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete <i>Phanerochaete chrysosporium</i> . Journal of Applied Glycoscience (1999), 2020, 67, 79-86.	0.7	4
131	Effect of amines as activators on the alcohol-oxidizing activity of pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenase. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1195-1198.	1.3	3
132	Substrate-recognition mechanism of tomato β-galactosidase 4 using X-ray crystallography and docking simulation. Planta, 2020, 252, 72.	3.2	3
133	Unique active-site and subsite features in the arabinogalactan-degrading CH43 exo-Î2-1,3-galactanase from Phanerochaete chrysosporium. Journal of Biological Chemistry, 2020, 295, 18539-18552.	3.4	3
134	Glucomannan and beta-glucan degradation by Mytilus edulis Cel45A: Crystal structure and activity comparison with GH45 subfamily A, B and C. Carbohydrate Polymers, 2022, 277, 118771.	10.2	3
135	Molecular analysis of cyclic α-maltosyl-(1→6)-maltose binding protein in the bacterial metabolic pathway. PLoS ONE, 2020, 15, e0241912.	2.5	3
136	Title is missing!. Kagaku To Seibutsu, 2009, 47, 323-328.	0.0	2
137	Determination of DNA amplification conditions for quantitative assessment of basidiomycotal flora. MOKUZAI HOZON (Wood Protection), 2010, 36, 200-207.	0.0	2
138	Secretome Analysis Using Transcriptomic Sequence Database of Flammulina velutipes. Mokuzai Gakkai Shi, 2010, 56, 388-396.	0.2	2
139	Cloning, expression and purification of the anion exchanger 1 homologue from the basidiomycete Phanerochaete chrysosporium. Protein Expression and Purification, 2011, 79, 81-87.	1.3	2
140	The use of neutron scattering to determine the functional structure of glycoside hydrolase. Current Opinion in Structural Biology, 2016, 40, 54-61.	5.7	2
141	A protease/peptidase from culture medium of <i>Flammulina velutipes</i> that acts on arabinogalactan-protein. Bioscience, Biotechnology and Biochemistry, 2017, 81, 475-481.	1.3	2
142	Role of Tryptophan 38 in Loading Substrate Chain into the Active-site Tunnel of Cellobiohydrolase I from <i>Trichoderma reesei</i> . Journal of Applied Glycoscience (1999), 2021, 68, 19-29.	0.7	2
143	Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete <i>Phanerochaete chrysosporium</i> . Journal of Applied Glycoscience (1999), 2020, 67, 51-57.	0.7	2

144 é...,åŒ−é,,,å...fé...µç´ãŒé−¢ä,Žã™ã,‹ç™½è‰²æœ¨æè...œœ½èŒã®ã,»ãƒ«ãƒãƒ¼ã,¹åˆ†è§£æ©Ÿæ§‹. Kagaku To Sæibutsu, 2003, 41, 2

#	Article	IF	CITATIONS
145	Analysis of fungal flora present in a decayed foundation of a wooden house. MOKUZAI HOZON (Wood) Tj ETQq1	1,0,78431 0.0	4 rgBT /Ove
146	Title is missing!. Kagaku To Seibutsu, 2015, 53, 381-388.	0.0	1
147	Characterization of Glycoside Hydrolase Family 7 Cellobiohydrolases Produced by Flammulina velutipes in Cellulose-Degrading Culture. Mokuzai Gakkai Shi, 2010, 56, 397-404.	0.2	1
148	Recycle Utilization of Waste Sawdust Substrate for Sawdust-Based Cultivation of Hericium erinaceum. Mokuzai Gakkai Shi, 2008, 54, 327-332.	0.2	1
149	Single Amino Acid Mutation around Flavin Cofactor Changes pH-Dependence of Basidiomycetes Class I Cellobiose Dehydrogenase Activity. Journal of Applied Glycoscience (1999), 2013, 60, 111-116.	0.7	1
150	The Real Ability of Cellobiohydrolase during Crystalline Cellulose Hydrolysis Revealed by a Single-Molecule Observation. Kagaku To Seibutsu, 2014, 52, 218-222.	0.0	1
151	Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete. Journal of Applied Glycoscience (1999), 2020, 67, 79-86.	0.7	1
152	Direct Electrochemistry of Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete Chrysosporium. ECS Meeting Abstracts, 2008, , .	0.0	0
153	2P325 Single molecular observations of processive glycosidases by high-speed atomic force microscopy(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S140.	0.1	0
154	Direct Visualization of Cellobiohydrolase on Crystalline Cellulose using High-Speed Atomic Force Microscopy. Biophysical Journal, 2012, 102, 585a-586a.	0.5	0
155	Development of Microchamber Array Chip-Based Assay System for β-Glucosidase Activity. Biophysical Journal, 2012, 102, 186a-187a.	0.5	0
156	Identification of Filamentous Fungi in Paper Damaged by Tsunami of the Great East Japan Earthquake. Kami Pa Gikyoshi/Japan Tappi Journal, 2012, 66, 1008-1016.	0.1	0
157	Probing Single-Molecule Enzymatic Dynamics of B-Glucosidase using Zero-Mode Waveguides. Biophysical Journal, 2013, 104, 178a.	0.5	0
158	Growth of a Large Crystal of Inverting Cellulase for Neutron/X-ray Structural Analysis. Nihon Kessho Gakkaishi, 2015, 57, 59-65.	0.0	0
159	New Insights Taking Lessons from Past Mechanistic Analysis of Enzymatic Cellulose Degradation for Biomass Refinery. Mokuzai Gakkai Shi, 2015, 61, 212-216.	0.2	0
160	Origin and Diversity of Wood Decay Fungi Revealed by Genome-Based Analyses. Mokuzai Gakkai Shi, 2019, 65, 173-188.	0.2	0
161	Expression of Recombinant Fungal Proteins in Pichia Pastoris. , 2021, , 518-527.		0
162	[Mini Review] Recent Advances in Enzymatic Degradation of Cellulose. Bulletin of Applied Glycoscience, 2012, 2, 234-235.	0.0	0

#	Article	IF	CITATIONS
163	Real Time Single Molecular Imaging of Enzymatic Degradation of Crystalline Cellulose by High-speed Atomic Force Microscopy. Seibutsu Butsuri, 2013, 53, 140-144.	0.1	о
164	Oics analyses of white- and brown rot fungi to understand the mechanism of wood decay. MOKUZAI HOZON (Wood Protection), 2014, 40, 152-161.	0.0	0
165	Molecular Mechanism of an Exo-type Cellulase Revealed by Single-molecule Analysis. Seibutsu Butsuri, 2014, 54, 318-320.	0.1	Ο
166	Visualization of the enzymatic degradation of crystalline cellulose at a molecular level. Plant Morphology, 2017, 29, 9-13.	0.1	0
167	Single Amino Acid Mutation of Pyranose 2-Oxidase Results in Increased Specificity for Diabetes Biomarker 1,5-Anhydro-D-Glucitol. Journal of Applied Glycoscience (1999), 2020, 67, 73-78.	0.7	Ο
168	Single Amino Acid Mutation of Pyranose 2-Oxidase Results in Increased Specificity for Diabetes Biomarker 1,5-Anhydro-D-Glucitol. Journal of Applied Glycoscience (1999), 2020, 67, 73-78.	0.7	0