Chaoxu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7313012/publications.pdf

Version: 2024-02-01

		201674	168389
53	3,299	27	53
papers	citations	h-index	g-index
53	53	53	4262
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Guiding cellular channels of artificial nanohybrid woods for anisotropic properties and solar-thermal evaporation. Chemical Engineering Journal, 2022, 428, 132060.	12.7	13
2	Bio-inspired water resistant and fast multi-responsive Janus actuator assembled by cellulose nanopaper and graphene with lignin adhesion. Chemical Engineering Journal, 2022, 433, 133672.	12.7	29
3	Bubble-Templated Design of Superelastic Cellulose Foam as a Durable Ionotropic Sensor. ACS Sustainable Chemistry and Engineering, 2022, 10, 1714-1721.	6.7	7
4	Rapid and manual-shaking exfoliation of amidoximated cellulose nanofibrils for a large-capacity filtration capture of uranium. Journal of Materials Chemistry A, 2022, 10, 7920-7927.	10.3	12
5	Synergetic and persistent harvesting of electricity and potable water from ambient moisture with biohybrid fibrils. Journal of Materials Chemistry A, 2022, 10, 8356-8363.	10.3	12
6	Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core–Shell Wires. ACS Applied Materials & Interfaces, 2022, 14, 18690-18696.	8.0	7
7	Mildly Peeling Off and Encapsulating Large MXene Nanosheets with Rigid Biologic Fibrils for Synchronization of Solar Evaporation and Energy Harvest. ACS Nano, 2022, 16, 8881-8890.	14.6	32
8	Biofibrous nanomaterials for extracting strategic metal ions from water. Exploration, 2022, 2, .	11.0	3
9	Templating metal-organic framework into fibrous nanohybrids for large-capacity and high-flux filtration interception. Journal of Membrane Science, 2021, 622, 119049.	8.2	7
10	Design of MXene Composites with Biomimetic Rapid and Self-Oscillating Actuation under Ambient Circumstances. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31978-31985.	8.0	44
11	Nacre-based carbon nanomeshes for a soft ionic actuator with large and rapid deformation. Journal of Materials Chemistry C, 2020, 8, 1634-1641.	5.5	9
12	The synthesis of high-aspect-ratio Au microwires with a biomolecule for electrochemical sensing. Chemical Communications, 2020, 56, 743-746.	4.1	6
13	Noncloggingly Sieving Sub-6 nm Nanoparticles of Noble Metals into Conductive Mesoporous Foams with Biological Nanofibrils. ACS Nano, 2020, 14, 828-834.	14.6	13
14	Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices. Chemical Engineering Journal, 2020, 392, 123788.	12.7	93
15	Peeling and Mesoscale Dissociation of Silk Fibers for Hybridization of Electrothermic Fibrous Composites. ACS Sustainable Chemistry and Engineering, 2020, 8, 248-255.	6.7	12
16	Quaternized Silk Nanofibrils for Electricity Generation from Moisture and Ion Rectification. ACS Nano, 2020, 14, 10600-10607.	14.6	60
17	Liquid Metal Initiator of Ringâ€Opening Polymerization: Selfâ€Capsulation into Thermal/Photomoldable Powder for Multifunctional Composites. Advanced Materials, 2020, 32, e2003553.	21.0	58
18	Bovine serum albumin fibrous biofilm template synthesis of metallic nanomeshes for surface-enhanced Raman scattering and electrocatalytic detection. Materials and Design, 2020, 192, 108777.	7.0	8

#	Article	IF	Citations
19	Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy, 2020, 71, 104610.	16.0	84
20	Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nature Communications, 2019, 10, 3514.	12.8	148
21	Separation of Caustic Nano-Emulsions and Macromolecular Conformations with Nanofibrous Membranes of Marine Chitin. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8576-8583.	8.0	9
22	Sheet-like and tubular aggregates of protein nanofibril–phosphate hybrids. Chemical Communications, 2019, 55, 393-396.	4.1	6
23	Biological Nanofibrous Generator for Electricity Harvest from Moist Air Flow. Advanced Functional Materials, 2019, 29, 1901798.	14.9	137
24	Inhibiting and catalysing amyloid fibrillation at dynamic lipid interfaces. Journal of Colloid and Interface Science, 2019, 543, 256-262.	9.4	5
25	Photo-responsive heterojunction nanosheets of reduced graphene oxide for photo-detective flexible energy devices. Journal of Materials Chemistry A, 2019, 7, 7736-7744.	10.3	15
26	Conductive Core–Shell Aramid Nanofibrils: Compromising Conductivity with Mechanical Robustness for Organic Wearable Sensing. ACS Applied Materials & Interfaces, 2019, 11, 3466-3473.	8.0	26
27	Nacre-Templated Synthesis of Highly Dispersible Carbon Nanomeshes for Layered Membranes with High-Flux Filtration and Sensing Properties. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2850-2858.	8.0	11
28	Liquid exfoliated chitin nanofibrils for re-dispersibility and hybridization of two-dimensional nanomaterials. Chemical Engineering Journal, 2018, 344, 498-505.	12.7	26
29	Biomimetic engineering of spider silk fibres with graphene for electric devices with humidity and motion sensitivity. Journal of Materials Chemistry C, 2018, 6, 3212-3219.	5.5	33
30	Trans-Scale 2D Synthesis of Millimeter-Large Au Single Crystals via Silk Fibroin Templates. ACS Sustainable Chemistry and Engineering, 2018, 6, 12419-12425.	6.7	15
31	Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination. Nano Energy, 2018, 50, 308-315.	16.0	100
32	Supramolecular proteinaceous biofilms as trapping sponges for biologic water treatment and durable catalysis. Journal of Colloid and Interface Science, 2018, 527, 117-123.	9.4	25
33	Liquid Metal Droplets Wrapped with Polysaccharide Microgel as Biocompatible Aqueous Ink for Flexible Conductive Devices. Advanced Functional Materials, 2018, 28, 1804197.	14.9	188
34	Shapeable Fibrous Aerogels of Metal–Organic-Frameworks Templated with Nanocellulose for Rapid and Large-Capacity Adsorption. ACS Nano, 2018, 12, 4462-4468.	14.6	301
35	Crab Chitinâ€Based 2D Soft Nanomaterials for Fully Biobased Electric Devices. Advanced Materials, 2017, 29, 1606895.	21.0	109
36	Bioinspired Coupling of Inorganic Layered Nanomaterials with Marine Polysaccharides for Efficient Aqueous Exfoliation and Smart Actuating Hybrids. Advanced Materials, 2017, 29, 1604691.	21.0	79

#	Article	IF	CITATIONS
37	Catecholic Coating and Silver Hybridization of Chitin Nanocrystals for Ultrafiltration Membrane with Continuous Flow Catalysis and Gold Recovery. ACS Sustainable Chemistry and Engineering, 2017, 5, 10673-10681.	6.7	25
38	Activation of Actuating Hydrogels with WS ₂ Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation. ACS Applied Materials & Interfaces, 2017, 9, 32280-32289.	8.0	44
39	Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes. ACS Nano, 2017, 11, 8178-8184.	14.6	131
40	Fibrous carbon nanosheets from Kevlar nanofibrils: Compromising one and two dimensions of carbon nanomaterials for optimal capacitive performance. Carbon, 2017, 123, 565-573.	10.3	13
41	Guiding growth orientation of two-dimensional Au nanocrystals with marine chitin nanofibrils for ultrasensitive and ultrafast sensing hybrids. Journal of Materials Chemistry B, 2017, 5, 9502-9506.	5.8	19
42	Amyloid-graphene oxide as immobilization platform of Au nanocatalysts and enzymes for improved glucose-sensing activity. Journal of Colloid and Interface Science, 2017, 490, 336-342.	9.4	34
43	Single-crystal Au microflakes modulated by amino acids and their sensing and catalytic properties. Journal of Colloid and Interface Science, 2016, 467, 115-120.	9.4	13
44	Two-Dimensional Au Nanocrystals: Shape/Size Controlling Synthesis, Morphologies, and Applications. Particle and Particle Systems Characterization, 2015, 32, 796-808.	2.3	36
45	Macroscopic Singleâ€Crystal Gold Microflakes and Their Devices. Advanced Materials, 2015, 27, 1945-1950.	21.0	47
46	Amyloidâ€Hydroxyapatite Bone Biomimetic Composites. Advanced Materials, 2014, 26, 3207-3212.	21.0	188
47	Directed Growth of Silk Nanofibrils on Graphene and Their Hybrid Nanocomposites. ACS Macro Letters, 2014, 3, 146-152.	4.8	131
48	Modulating Materials by Orthogonally Oriented βâ€Strands: Composites of Amyloid and Silk Fibroin Fibrils. Advanced Materials, 2014, 26, 4569-4574.	21.0	119
49	Hybrid Nanocomposites of Gold Singleâ€Crystal Platelets and Amyloid Fibrils with Tunable Fluorescence, Conductivity, and Sensing Properties. Advanced Materials, 2013, 25, 3694-3700.	21.0	111
50	The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology. Nanoscale, 2013, 5, 6207.	5.6	141
51	Tunable Carbon Nanotube/Protein Coreâ€Shell Nanoparticles with NIR―and Enzymaticâ€Responsive Cytotoxicity. Advanced Materials, 2013, 25, 1010-1015.	21.0	43
52	Functionalization of Multiwalled Carbon Nanotubes and Their pH-Responsive Hydrogels with Amyloid Fibrils. Langmuir, 2012, 28, 10142-10146.	3.5	49
53	Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nature Nanotechnology, 2012, 7, 421-427.	31.5	413