
Hu Shaozheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7312678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkali Hydrothermal Treatment to Synthesize Hydroxyl Modified g-C ₃ N ₄ with Outstanding Photocatalytic Phenolic Compounds Oxidation Ability. Nano, 2020, 15, 2050083.	1.0	6
2	Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability. Chinese Journal of Catalysis, 2019, 40, 1178-1186.	14.0	36
3	Construction of a wide-spectrum-driven V _N -g-C ₃ N ₄ /Cu ₂ (OH) ₂ CO ₃ heterojunction catalyst from VIS to NIR light <i>via</i> the <i>in situ</i> self-sacrificial method: the effect of oxygen on the N ₂ photofixation ability. New Journal of Chemistry, 2019, 43,	2.8	8
4	Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N2 fixation: Experiment and DFT simulation analysis. Chemical Engineering Journal, 2019, 368, 896-904.	12.7	72
5	Template free synthesis of lithium doped three-dimensional macroporous graphitic carbon nitride for photocatalytic N ₂ fixation: the effect of Li–N active sites. Dalton Transactions, 2019, 48, 5083-5089.	3.3	27
6	Hydrothermal Synthesis of Band Gap-Tunable Oxygen-Doped g-C ₃ N ₄ with Outstanding "Two-Channel―Photocatalytic H ₂ O ₂ Production Ability Assisted by Dissolution–Precipitation Process. Nano, 2019, 14, 1950023.	1.0	28
7	A facile approach to synthesize oxygen doped g-C ₃ N ₄ with enhanced visible light activity under anoxic conditions <i>via</i> oxygen-plasma treatment. New Journal of Chemistry, 2018, 42, 4998-5004.	2.8	51
8	Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites. Chemical Engineering Journal, 2018, 334, 410-418.	12.7	168
9	A green and facile method to prepare graphitic carbon nitride nanosheets with outstanding photocatalytic H ₂ O ₂ production ability <i>via</i> NaClO hydrothermal treatment. New Journal of Chemistry, 2018, 42, 18335-18341.	2.8	26
10	One step synthesis of high-efficiency AgBr–Br–g-C ₃ N ₄ composite catalysts for photocatalytic H ₂ O ₂ production <i>via</i> two channel pathway. RSC Advances, 2018, 8, 36903-36909.	3.6	25
11	"Two channel―photocatalytic hydrogen peroxide production using g-C ₃ N ₄ coated CuO nanorod heterojunction catalysts prepared <i>via</i> a novel molten salt-assisted microwave process. New Journal of Chemistry, 2018, 42, 13529-13535.	2.8	38
12	The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment. Diamond and Related Materials, 2018, 86, 159-166.	3.9	55
13	In situ construction of Z-scheme g-C ₃ N ₄ /Mg _{1.1} Al _{0.3} Fe _{0.2} O _{1.7} nanorod heterostructures with high N ₂ photofixation ability under visible light. RSC Advances. 2017. 7. 18099-18107.	3.6	51
14	Preparation of the W ₁₈ O ₄₉ /g-C ₃ N ₄ heterojunction catalyst with full-spectrum-driven photocatalytic N ₂ photofixation ability from the UV to near infrared region. New Journal of Chemistry, 2017, 41, 8920-8926.	2.8	79
15	The effect of Ni(<scp>i</scp>)–N active sites on the photocatalytic H ₂ O ₂ production ability over nickel doped graphitic carbon nitride nanofibers. New Journal of Chemistry, 2017, 41, 15289-15297.	2.8	26
16	Effect of Cu(l)–N Active Sites on the N ₂ Photofixation Ability over Flowerlike Copper-Doped g-C ₃ N ₄ Prepared via a Novel Molten Salt-Assisted Microwave Process: The Experimental and Density Functional Theory Simulation Analysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 6863-6872.	6.7	86
17	Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis. Applied Catalysis B: Environmental, 2017, 201, 58-69.	20.2	287
18	Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light. RSC Advances, 2016, 6, 49862-49867.	3.6	61

Hu Shaozheng

#	Article	IF	CITATIONS
19	Construction of g-C ₃ N ₄ /Zn _{0.11} Sn _{0.12} Cd _{0.88} S _{1.12Hybrid Heterojunction Catalyst with Outstanding Nitrogen Photofixation Performance Induced by Sulfur Vacancies. ACS Sustainable Chemistry and Engineering, 2016, 4, 2269-2278.}	6.7	107
20	Infrared ray assisted microwave synthesis: a convenient method for large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability. RSC Advances, 2016, 6, 45931-45937.	3.6	34
21	Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catalysis Science and Technology, 2016, 6, 5884-5890.	4.1	160
22	Construction of a 2D/2D g-C ₃ N ₄ /rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Advances, 2016, 6, 25695-25702.	3.6	85
23	Preparation of g-C ₃ N ₄ /ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalton Transactions, 2016, 45, 3497-3505.	3.3	85
24	Practical Preparation of Carbon Black/Carbon Nitride Compounds and Their Photocatalytic Performance. Bulletin of the Korean Chemical Society, 2015, 36, 2527-2533.	1.9	1
25	Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method. Applied Surface Science, 2015, 332, 625-630.	6.1	129
26	Properties and photocatalytic performance of polypyrrole and polythiophene modified g-C ₃ N ₄ nanocomposites. RSC Advances, 2015, 5, 31947-31953.	3.6	54
27	Synthesis and properties of visible light responsive g-C ₃ N ₄ /Bi ₂ O ₂ CO ₃ layered heterojunction nanocomposites. RSC Advances, 2015, 5, 42736-42743.	3.6	36
28	Construction of g-C ₃ N ₄ /S-g-C ₃ N ₄ metal-free isotype heterojunctions with an enhanced charge driving force and their photocatalytic performance under anoxic conditions. RSC Advances, 2015, 5, 90750-90756.	3.6	45
29	Hydrothermal synthesis of oxygen functionalized S–P codoped g-C ₃ N ₄ nanorods with outstanding visible light activity under anoxic conditions. Dalton Transactions, 2015, 44, 20889-20897.	3.3	85
30	Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Transactions, 2015, 44, 1084-1092.	3.3	295
31	A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure. RSC Advances, 2014, 4, 62912-62919.	3.6	142
32	Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Applied Surface Science, 2014, 311, 164-171.	6.1	376
33	A simple and efficient method to prepare a phosphorus modified g-C ₃ N ₄ visible light photocatalyst. RSC Advances, 2014, 4, 21657-21663.	3.6	194
34	The influence of preparation method on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst. Ceramics International, 2014, 40, 11963-11969.	4.8	58
35	The influence of preparation method, nitrogen source, and post-treatment on the photocatalytic activity and stability of N-doped TiO2 nanopowder. Journal of Hazardous Materials, 2011, 196, 248-254.	12.4	46