
Reed B Wickner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7311575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prion Domain Initiation of Amyloid Formation in Vitro from Native Ure2p. Science, 1999, 283, 1339-1343.	12.6	293
2	Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proceedings of the United States of America, 2006, 103, 19754-19759.	7.1	280
3	[URE3] Prion Propagation in Saccharomyces cerevisiae : Requirement for Chaperone Hsp104 and Curing by Overexpressed Chaperone Ydj1p. Molecular and Cellular Biology, 2000, 20, 8916-8922.	2.3	270
4	Molecular Structures of Amyloid and Prion Fibrils: Consensus versus Controversy. Accounts of Chemical Research, 2013, 46, 1487-1496.	15.6	254
5	Yeast prions [URE3] and [PSI+] are diseases. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10575-10580.	7.1	243
6	Interactions among prions and prion "strains" in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16392-16399.	7.1	235
7	Prions of fungi: inherited structures and biological roles. Nature Reviews Microbiology, 2007, 5, 611-618.	28.6	214
8	Primary sequence independence for prion formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12825-12830.	7.1	203
9	Suicidal [<i>PSI</i> ⁺] is a lethal yeast prion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5337-5341.	7.1	183
10	Scrambled Prion Domains Form Prions and Amyloid. Molecular and Cellular Biology, 2004, 24, 7206-7213.	2.3	171
11	[PSI] and [URE3] as yeast prions. Yeast, 1995, 11, 1671-1685.	1.7	162
12	Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5253-5260.	7.1	162
13	Parallel In-register Intermolecular Î ² -Sheet Architectures for Prion-seeded Prion Protein (PrP) Amyloids. Journal of Biological Chemistry, 2014, 289, 24129-24142.	3.4	157
14	Characterization of β-Sheet Structure in Ure2p ₁ ₋ ₈₉ Yeast Prion Fibrils by Solid-State Nuclear Magnetic Resonance. Biochemistry, 2007, 46, 13149-13162.	2.5	154
15	TWO CHROMOSOMAL GENES REQUIRED FOR KILLING EXPRESSION IN KILLER STRAINS OF <i>SACCHAROMYCES CEREVISIAE</i> . Genetics, 1976, 82, 429-442.	2.9	154
16	Purification of Adenosylmethionine Decarboxylase from Escherichia coli W: Evidence For Covalently Bound Pyruvate. Journal of Biological Chemistry, 1970, 245, 2132-2139.	3.4	152
17	Mutants of Saccharomyces cerevisiae That Incorporate Deoxythymidine-5′-Monophosphate Into Deoxyribonucleic Acid In Vivo. Journal of Bacteriology, 1974, 117, 252-260.	2.2	152
18	L-A virus at 3.4 Ã resolution reveals particle architecture and mRNA decapping mechanism. Nature Structural Biology, 2002, 9, 725-728.	9.7	151

#	Article	IF	CITATIONS
19	Structural Insights into Functional and Pathological Amyloid. Journal of Biological Chemistry, 2011, 286, 16533-16540.	3.4	146
20	Architecture of Ure2p Prion Filaments. Journal of Biological Chemistry, 2003, 278, 43717-43727.	3.4	144
21	"Killer Character―of <i>Saccharomyces cerevisiae</i> : Curing by Growth at Elevated Temperature. Journal of Bacteriology, 1974, 117, 1356-1357.	2.2	143
22	Amyloid of Rnq1p, the basis of the [<i>PIN</i> ⁺] prion, has a parallel in-register β-sheet structure. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2403-2408.	7.1	141
23	Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell, 1990, 62, 819-828.	28.9	137
24	Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs. Cell, 1982, 31, 429-441.	28.9	132
25	The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13731-13736.	7.1	129
26	Heritable activity: a prion that propagates by covalent autoactivation. Genes and Development, 2003, 17, 2083-2087.	5.9	123
27	Yeast Prions: Structure, Biology, and Prion-Handling Systems. Microbiology and Molecular Biology Reviews, 2015, 79, 1-17.	6.6	123
28	Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14339-14344.	7.1	122
29	Prion domains: sequences, structures and interactions. Nature Cell Biology, 2005, 7, 1039-1044.	10.3	120
30	The Functional Curli Amyloid Is Not Based on In-register Parallel Î ² -Sheet Structure. Journal of Biological Chemistry, 2009, 284, 25065-25076.	3.4	119
31	CHROMOSOMAL AND NONCHROMOSOMAL MUTATIONS AFFECTING THE "KILLER CHARACTER" OF <i>SACCHAROMYCES CEREVISIAE</i> . Genetics, 1974, 76, 423-432.	2.9	118
32	Dehydroalanine in Histidine Ammonia Lyase. Journal of Biological Chemistry, 1969, 244, 6550-6552.	3.4	115
33	Gene overlap results in a viral protein having an RNA binding domain and a major coat protein domain. Cell, 1988, 55, 663-671.	28.9	114
34	Viruses and Prions of Saccharomyces cerevisiae. Advances in Virus Research, 2013, 86, 1-36.	2.1	110
35	Structure of L-A Virus: A Specialized Compartment for the Transcription and Replication of Double-stranded RNA. Journal of Cell Biology, 1997, 138, 975-985.	5.2	107
36	Pol of gag–pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature, 1992, 359, 746-749.	27.8	106

#	Article	IF	CITATIONS
37	Two Prion-Inducing Regions of Ure2p Are Nonoverlapping. Molecular and Cellular Biology, 1999, 19, 4516-4524.	2.3	104
38	Plasmids controlling exclusion of the K2 killer double-stranded RNA plasmid of yeast. Cell, 1980, 21, 217-226.	28.9	103
39	Nucleotide Exchange Factors for Hsp70s Are Required for [URE3] Prion Propagation inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2007, 18, 2149-2154.	2.1	98
40	Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. EMBO Journal, 2008, 27, 2725-2735.	7.8	94
41	GENETIC CONTROL OF L-A AND L-(BC) dsRNA COPY NUMBER IN KILLER SYSTEMS OF SACCHAROMYCES CEREVISIAE. Genetics, 1984, 107, 199-217.	2.9	91
42	TWENTY-SIX CHROMOSOMAL GENES NEEDED TO MAINTAIN THE KILLER DOUBLE-STRANDED RNA PLASMID OF SACCHAROMYCES CEREVISIAE. Genetics, 1978, 88, 419-425.	2.9	90
43	PRIONS AND RNA VIRUSES OFSACCHAROMYCES CEREVISIAE. Annual Review of Genetics, 1996, 30, 109-139.	7.6	89
44	Two Prion Variants of Sup35p Have In-Register Parallel β-Sheet Structures, Independent of Hydration. Biochemistry, 2009, 48, 5074-5082.	2.5	89
45	Linking the 3′ Poly(A) Tail to the Subunit Joining Step of Translation Initiation: Relations of Pab1p, Eukaryotic Translation Initiation Factor 5B (Fun12p), and Ski2p-Slh1p. Molecular and Cellular Biology, 2001, 21, 4900-4908.	2.3	84
46	Protein inheritance (prions) based on parallel inâ€register βâ€sheet amyloid structures. BioEssays, 2008, 30, 955-964.	2.5	82
47	Conservation of a portion of the S. cerevisiae Ure2p prion domain that interacts with the full-length protein. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16384-16391.	7.1	81
48	Prion Genetics: New Rules for a New Kind of Gene. Annual Review of Genetics, 2004, 38, 681-707.	7.6	80
49	Prion Filament Networks in [Ure3] Cells of Saccharomyces cerevisiae. Journal of Cell Biology, 2001, 153, 1327-1336.	5.2	79
50	FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein and Cell, 2011, 2, 223-236.	11.0	79
51	Filaments of the Ure2p prion protein have a cross-Î ² core structure. Journal of Structural Biology, 2005, 150, 170-179.	2.8	77
52	Molecular cloning of chromosome I DNA fromSaccharomyces cerevisiae: Isolation of theMAK16 gene and analysis of an adjacent gene essential for growth at low temperatures. Yeast, 1987, 3, 51-57.	1.7	76
53	Prions: proteins as genes and infectious entities. Genes and Development, 2004, 18, 470-485.	5.9	76
54	Prions of Yeast as Heritable Amyloidoses. Journal of Structural Biology, 2000, 130, 310-322.	2.8	73

#	Article	IF	CITATIONS
55	Ure2p Function Is Enhanced by Its Prion Domain in Saccharomyces cerevisiae. Genetics, 2007, 176, 1557-1565.	2.9	72
56	Prions of Yeast and Fungi. Journal of Biological Chemistry, 1999, 274, 555-558.	3.4	71
57	Structure and nuclear localization signal of the SK13 antiviral protein ofSaccharomyces cerevisiae. Yeast, 1989, 5, 149-158.	1.7	70
58	Yeast and Fungal Prions. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023531.	5.5	68
59	Prions in <i>Saccharomyces</i> and <i>Podospora</i> spp.: Protein-Based Inheritance. Microbiology and Molecular Biology Reviews, 1999, 63, 844-861.	6.6	67
60	Locating folds of the in-register parallel β-sheet of the Sup35p prion domain infectious amyloid. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4615-22.	7.1	67
61	[URE3] prion propagation is abolished by a mutation of the primary cytosolic Hsp70 of budding yeast. Yeast, 2004, 21, 107-117.	1.7	66
62	The yeast Sup35NM domain propagates as a prion in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 462-467.	7.1	65
63	The [PSI+] Prion Exists as a Dynamic Cloud of Variants. PLoS Genetics, 2013, 9, e1003257.	3.5	65
64	Ski6p Is a Homolog of RNA-Processing Enzymes That Affects Translation of Non-Poly(A) mRNAs and 60S Ribosomal Subunit Biogenesis. Molecular and Cellular Biology, 1998, 18, 2688-2696.	2.3	64
65	Amyloids of Shuffled Prion Domains That Form Prions Have a Parallel In-Register β-Sheet Structureâ€. Biochemistry, 2008, 47, 4000-4007.	2.5	63
66	Prion Variants and Species Barriers Among Saccharomyces Ure2 Proteins. Genetics, 2009, 181, 1159-1167.	2.9	63
67	Prion amyloid structure explains templating: how proteins can be genes. FEMS Yeast Research, 2010, 10, 980-991.	2.3	63
68	Sex, prions, and plasmids in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2683-90.	7.1	63
69	A prion of yeast metacaspase homolog (Mca1p) detected by a genetic screen. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1892-1896.	7.1	62
70	Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2711-20.	7.1	61
71	[HOK], A NEW YEAST NON-MENDELIAN TRAIT, ENABLES A REPLICATION-DEFECTIVE KILLER PLASMID TO BE MAINTAINED. Genetics, 1982, 100, 159-174.	2.9	60
72	MAPPING CHROMOSOMAL GENES OF SACCHAROMYCES CEREVISIAE USING AN IMPROVED GENETIC MAPPING METHOD. Genetics, 1979, 92, 803-821.	2.9	60

#	Article	IF	CITATIONS
73	Segmental Polymorphism in a Functional Amyloid. Biophysical Journal, 2011, 101, 2242-2250.	0.5	59
74	pet 18: A chromosomal gene required for cell growth and for the maintenance of mitochondrial DNA and the killer plasmid of yeast. Molecular Genetics and Genomics, 1978, 165, 115-121.	2.4	57
75	Is the Prion Domain of Soluble Ure2p Unstructured?. Biochemistry, 2005, 44, 321-328.	2.5	56
76	The Core of Ure2p Prion Fibrils Is Formed by the N-Terminal Segment in a Parallel Cross-β Structure: Evidence from Solid-State NMR. Journal of Molecular Biology, 2011, 409, 263-277.	4.2	56
77	Amyloids and Yeast Prion Biology. Biochemistry, 2013, 52, 1514-1527.	2.5	55
78	Yeast virology. FASEB Journal, 1989, 3, 2257-2265.	0.5	53
79	The yeast prions [PSI+] and [URE3] are molecular degenerative diseases. Prion, 2011, 5, 258-262.	1.8	52
80	Mks1p Is a Regulator of Nitrogen Catabolism Upstream of Ure2p in Saccharomyces cerevisiae. Genetics, 1999, 153, 585-594.	2.9	51
81	The Ski7 Antiviral Protein Is an EF1-α Homolog That Blocks Expression of Non-Poly(A) mRNA in <i>Saccharomyces cerevisiae</i> . Journal of Virology, 1999, 73, 2893-2900.	3.4	50
82	Deoxyribonucleic Acid Polymerase II of Escherichia coli. Journal of Biological Chemistry, 1972, 247, 498-504.	3.4	47
83	Repeat Domains of Melanosome Matrix Protein Pmel17 Orthologs Form Amyloid Fibrils at the Acidic Melanosomal pH. Journal of Biological Chemistry, 2011, 286, 8385-8393.	3.4	45
84	Prion diseases of yeast: Amyloid structure and biology. Seminars in Cell and Developmental Biology, 2011, 22, 469-475.	5.0	44
85	The yeast prions [PSI+] and [URE3] are molecular degenerative diseases. Prion, 2011, 5, 258-262.	1.8	41
86	Hsp104 disaggregase at normal levels cures many [PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4193-E4202.	7.1	40
87	How to find a prion: [URE3], [PSI+] and $[\hat{I}^2]$. Methods, 2006, 39, 3-8.	3.8	39
88	Molecular Chaperone Hsp104 Can Promote Yeast Prion Generation. Genetics, 2011, 188, 339-348.	2.9	39
89	[PSI+] Prion Transmission Barriers Protect Saccharomyces cerevisiae from Infection: Intraspecies 'Species Barriers'. Genetics, 2012, 190, 569-579.	2.9	39
90	A MUTANT KILLER PLASMID WHOSE REPLICATION DEPENDS ON A CHROMOSOMAL "SUPERKILLER" MUTATION. Genetics, 1979, 91, 673-682.	2.9	38

#	Article	lF	CITATIONS
91	DELETION OF MITOCHONDRIAL DNA BYPASSING A CHROMOSOMAL GENE NEEDED FOR MAINTENANCE OF THE KILLER PLASMID OF YEAST. Genetics, 1977, 87, 441-452.	2.9	37
92	A yeast antiviral protein,SKI8, shares a repeated amino acid sequence pattern with β-subunits of G proteins and several other proteins. Yeast, 1993, 9, 43-51.	1.7	36
93	Mak21p of Saccharomyces cerevisiae, a Homolog of Human CAATT-binding Protein, Is Essential for 60 S Ribosomal Subunit Biogenesis. Journal of Biological Chemistry, 1998, 273, 28912-28920.	3.4	35
94	Yeast Prions. Prion, 2007, 1, 94-100.	1.8	35
95	[PSI+] prion propagation is controlled by inositol polyphosphates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8402-E8410.	7.1	34
96	The structural basis of recognition and removal of cellular mRNA 7-methyl G ?caps? by a viral capsid protein: a unique viral response to host defense. Journal of Molecular Recognition, 2005, 18, 158-168.	2.1	33
97	Gene disruption indicates that the only essential function of the SKI8 chromosomal gene is to protect Saccharomyces cerevisiae from viral cytopathology. Virology, 1987, 157, 252-256.	2.4	32
98	MUTANTS OF THE KILLER PLASMID OF SACCHAROMYCES CEREVISIAE DEPENDENT ON CHROMOSOMAL DIPLOIDY FOR EXPRESSION AND MAINTENANCE. Genetics, 1976, 82, 273-285.	2.9	31
99	Prion-Forming Ability of Ure2 of Yeasts Is Not Evolutionarily Conserved. Genetics, 2011, 188, 81-90.	2.9	30
100	Experimentally Derived Structural Constraints for Amyloid Fibrils of Wild-Type Transthyretin. Biophysical Journal, 2011, 101, 2485-2492.	0.5	29
101	Sporadic Distribution of Prion-Forming Ability of Sup35p from Yeasts and Fungi. Genetics, 2014, 198, 605-616.	2.9	28
102	Yeast Prions Compared to Functional Prions and Amyloids. Journal of Molecular Biology, 2018, 430, 3707-3719.	4.2	28
103	Nonsense-mediated mRNA decay factors cure most [PSI+] prion variants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1184-E1193.	7.1	26
104	A New Non-Mendelian Genetic Element of Yeast That Increases Cytopathology Produced by M1 Double-Stranded RNA in ski Strains. Genetics, 1987, 117, 399-408.	2.9	26
105	VYeast sequencing reports.AFG1, a new member of theSEC18-NSF,PAS1,CDC48-VCP, TBP family of ATPases. Yeast, 1992, 8, 787-790.	1.7	24
106	Prion variants, species barriers, generation and propagation. Journal of Biology, 2009, 8, 47.	2.7	24
107	On the mechanism of exclusion of M2 double-stranded RNA by L-A-E, double-stranded RNA inSaccharomyces cerevisiae. Yeast, 1985, 1, 57-65.	1.7	23
108	Anti-Prion Systems in Yeast and Inositol Polyphosphates. Biochemistry, 2018, 57, 1285-1292.	2.5	21

#	Article	IF	CITATIONS
109	17 Prions of yeast as epigenetic phenomena: High protein "copy number―inducing protein "silencing― Advances in Genetics, 2002, 46, 485-525.	1.8	18
110	The [URE3] Prion in Candida. Eukaryotic Cell, 2013, 12, 551-558.	3.4	18
111	<i>Hermes</i> Transposon Mutagenesis Shows [URE3] Prion Pathology Prevented by a Ubiquitin-Targeting Protein: Evidence for Carbon/Nitrogen Assimilation Cross Talk and a Second Function for Ure2p in <i>Saccharomyces cerevisiae</i> . Genetics, 2018, 209, 789-800.	2.9	18
112	Anti-prion systems in yeast. Journal of Biological Chemistry, 2019, 294, 1729-1738.	3.4	18
113	Prion Variants of Yeast are Numerous, Mutable, and Segregate on Growth, Affecting Prion Pathogenesis, Transmission Barriers, and Sensitivity to Anti-Prion Systems. Viruses, 2019, 11, 238.	3.3	18
114	Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26298-26306.	7.1	16
115	Amyloid of theCandida albicansUre2p Prion Domain Is Infectious and Has an In-Register Parallel β-Sheet Structure. Biochemistry, 2011, 50, 5971-5978.	2.5	15
116	Scrapie in Ancient China?. Science, 2005, 309, 874b-874b.	12.6	14
117	Prions are affected by evolution at two levels. Cellular and Molecular Life Sciences, 2016, 73, 1131-1144.	5.4	14
118	Innate immunity to prions: anti-prion systems turn a tsunami of prions into a slow drip. Current Genetics, 2021, 67, 833-847.	1.7	13
119	Yeast Killer Elements Hold Their Hosts Hostage. PLoS Genetics, 2015, 11, e1005139.	3.5	12
120	Amyloid diseases of yeast: prions are proteins acting as genes. Essays in Biochemistry, 2014, 56, 193-205.	4.7	12
121	Effect of Domestication on the Spread of the [PIN+] Prion in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 197, 1007-1024.	2.9	11
122	Give credit where it's due (not to me, this time). Nature, 2000, 403, 356-356.	27.8	10
123	Saccharomyces cerevisiae. Prion, 2013, 7, 215-220.	1.8	10
124	XIV. Yeast sequencing reports. Sequence ofMKT1, needed for propagation of M2 satellite dsRNA of the L-A virus ofSaccharomyces cerevisiae. Yeast, 1994, 10, 1477-1479.	1.7	9
125	The relationship of prions and translation. Wiley Interdisciplinary Reviews RNA, 2010, 1, 81-89.	6.4	9
126	Antiprion systems in yeast cooperate to cure or prevent the generation of nearly all [<i> PSI ⁺ </i>] and [URE3] prions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9

#	Article	IF	CITATIONS
127	[URE3] and [PSI] as prions ofSaccharomyces cerevisiae: genetic evidence and biochemical properties. Seminars in Virology, 1996, 7, 215-223.	3.9	8
128	Prions of yeast fail to elicit a transcriptional response. Yeast, 2004, 21, 963-972.	1.7	8
129	Yeast Prions: Proteins Templating Conformation and an Anti-prion System. PLoS Pathogens, 2015, 11, e1004584.	4.7	8
130	How Do Yeast Cells Contend with Prions?. International Journal of Molecular Sciences, 2020, 21, 4742.	4.1	8
131	Ageing in yeast does not enhance prion generation. Yeast, 2006, 23, 1123-1128.	1.7	7
132	Discovering Protein-based Inheritance through Yeast Genetics. Journal of Biological Chemistry, 2012, 287, 14432-14441.	3.4	7
133	Proteasome Control of [URE3] Prion Propagation by Degradation of Anti-Prion Proteins Cur1 and Btn2 in <i>Saccharomyces cerevisiae</i> . Genetics, 2021, 218, .	2.9	7
134	Study of Amyloids Using Yeast. Methods in Molecular Biology, 2012, 849, 321-346.	0.9	7
135	Study of Amyloids Using Yeast. Methods in Molecular Biology, 2018, 1779, 313-339.	0.9	6
136	Innate immunity to yeast prions: Btn2p and Cur1p curing of the [URE3] prion is prevented by 60S ribosomal protein deficiency or ubiquitin/proteasome system overactivity. Genetics, 2021, 217, .	2.9	6
137	Nitrogen source and the retrograde signalling pathway affect detection, not generation, of the [URE3] prion. Yeast, 2006, 23, 833-840.	1.7	4
138	Prions. Cold Spring Harbor Protocols, 2017, 2017, pdb.top077586.	0.3	4
139	Prion Transfection of Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot089037.	0.3	4
140	Prion propagation and inositol polyphosphates. Current Genetics, 2018, 64, 571-574.	1.7	4
141	RNA-dependent RNA polymerase activity related to the 20S RNA replicon ofSaccharomyces cerevisiae. , 1996, 12, 1219-1228.		2
142	Genetic Methods for Studying Yeast Prions. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot089029.	0.3	1
143	Herbert Tabor, 1918–2020: Polyamines, NIH, and the <i>JBC</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	1
144	The Double-Stranded RNA Viruses of Saccharomyces Cerevisiae. , 2001, , 67-108.		1

#	Article	IF	CITATIONS
145	This year in YEAST. , 1998, 14, 1437-1438.		0
146	[URE3] Prion forms Filamentous Networks in Yeast Cytoplasm. Microscopy and Microanalysis, 2001, 7, 52-53.	0.4	0
147	Genetics is the logic of life (at least of mine). FEMS Yeast Research, 2018, 19, .	2.3	0
148	Proteins and Disease Prions of Yeast and Fungi: Proteins Acting as Genes. , 2021, , 86-91.		0
149	Yeast Prions Are Pathogenic, In-Register Parallel Amyloids. , 2013, , 217-231.		0
150	Introduction to Yeast and Fungal Prions. , 2013, , 205-215.		0
151	Prions of Yeast and Fungi. , 2020, , 487-492.		Ο