
## Nicola De Stefano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7310892/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 2004, 23, S208-S219.                                                               | 4.2  | 11,375    |
| 2  | Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis.<br>NeuroImage, 2002, 17, 479-489.                                                         | 4.2  | 1,828     |
| 3  | MRI criteria for the diagnosis of multiple sclerosis: MACNIMS consensus guidelines. Lancet<br>Neurology, The, 2016, 15, 292-303.                                                  | 10.2 | 679       |
| 4  | Reversible decreases in <i>N</i> â€acetylaspartate after acute brain injury. Magnetic Resonance in<br>Medicine, 1995, 34, 721-727.                                                | 3.0  | 453       |
| 5  | Normalized Accurate Measurement of Longitudinal Brain Change. Journal of Computer Assisted<br>Tomography, 2001, 25, 466-475.                                                      | 0.9  | 449       |
| 6  | Evidence of Axonal Damage in the Early Stages of Multiple Sclerosis and Its Relevance to Disability.<br>Archives of Neurology, 2001, 58, 65-70.                                   | 4.5  | 439       |
| 7  | Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurology, The, 2015, 14, 302-317.                                                         | 10.2 | 437       |
| 8  | Age-related changes in grey and white matter structure throughout adulthood. NeuroImage, 2010, 51, 943-951.                                                                       | 4.2  | 428       |
| 9  | Diseaseâ€Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis. Annals of<br>Neurology, 2021, 89, 780-789.                                              | 5.3  | 370       |
| 10 | Association between pathological and MRI findings in multiple sclerosis. Lancet Neurology, The, 2012, 11, 349-360.                                                                | 10.2 | 356       |
| 11 | MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—clinical implementation in the diagnostic process. Nature Reviews Neurology, 2015, 11, 471-482.              | 10.1 | 354       |
| 12 | Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines.<br>Brain, 2019, 142, 1858-1875.                                                  | 7.6  | 303       |
| 13 | 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurology, The, 2021, 20, 653-670.                                | 10.2 | 302       |
| 14 | Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology,<br>2018, 83, 210-222.                                                        | 5.3  | 295       |
| 15 | Chemical pathology of acute demyelinating lesions and its correlation with disability. Annals of Neurology, 1995, 38, 901-909.                                                    | 5.3  | 288       |
| 16 | Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes.<br>Neurology, 2010, 74, 1868-1876.                                                  | 1.1  | 284       |
| 17 | Detection of Cortical Inflammatory Lesions by Double Inversion Recovery Magnetic Resonance Imaging<br>in Patients With Multiple Sclerosis. Archives of Neurology, 2007, 64, 1416. | 4.5  | 282       |
| 18 | Evaluating and reducing the impact of white matter lesions on brain volume measurements. Human<br>Brain Mapping, 2012, 33, 2062-2071.                                             | 3.6  | 280       |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.                                                                                                                                                         | 7.6  | 269       |
| 20 | Brain atrophy and lesion load predict long term disability in multiple sclerosis. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2013, 84, 1082-1091.                                                                                            | 1.9  | 267       |
| 21 | Clinical Relevance of Brain Volume Measures in Multiple Sclerosis. CNS Drugs, 2014, 28, 147-156.                                                                                                                                                        | 5.9  | 254       |
| 22 | Radiologically Isolated Syndrome: 5-Year Risk for an Initial Clinical Event. PLoS ONE, 2014, 9, e90509.                                                                                                                                                 | 2.5  | 254       |
| 23 | Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of<br>multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet, The, 2004, 364,<br>1489-1496.                                    | 13.7 | 246       |
| 24 | Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis.<br>Annals of Neurology, 2014, 75, 43-49.                                                                                                        | 5.3  | 240       |
| 25 | Inclusion of brain volume loss in a revised measure of â€~no evidence of disease activity' (NEDA-4) in<br>relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1297-1305.                                                      | 3.0  | 228       |
| 26 | MRI and the diagnosis of multiple sclerosis: expanding the concept of "no better explanation― Lancet<br>Neurology, The, 2006, 5, 841-852.                                                                                                               | 10.2 | 217       |
| 27 | Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy<br>(CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects.<br>BMC Medicine, 2017, 15, 41.                      | 5.5  | 212       |
| 28 | Association of Neocortical Volume Changes With Cognitive Deterioration in Relapsing-Remitting Multiple Sclerosis. Archives of Neurology, 2007, 64, 1157.                                                                                                | 4.5  | 203       |
| 29 | Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurology,<br>The, 2014, 13, 807-822.                                                                                                                         | 10.2 | 197       |
| 30 | Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology, 2013, 80, 1330-1337.                                                                                                                                     | 1.1  | 189       |
| 31 | Brain MRI atrophy quantification in MS. Neurology, 2017, 88, 403-413.                                                                                                                                                                                   | 1.1  | 188       |
| 32 | Comparison of two dosing frequencies of subcutaneous interferon beta-1a in patients with a first clinical demyelinating event suggestive of multiple sclerosis (REFLEX): a phase 3 randomised controlled trial. Lancet Neurology, The, 2012, 11, 33-41. | 10.2 | 185       |
| 33 | Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies.<br>EBioMedicine, 2021, 72, 103581.                                                                                                                       | 6.1  | 184       |
| 34 | The Relationship Between Diffuse Axonal Damage and Fatigue in Multiple Sclerosis. Archives of Neurology, 2004, 61, 201.                                                                                                                                 | 4.5  | 181       |
| 35 | In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain, 1999, 122, 1933-1939.                                                                                                   | 7.6  | 176       |
| 36 | Diffuse Axonal and Tissue Injury in Patients With Multiple Sclerosis With Low Cerebral Lesion Load and No Disability. Archives of Neurology, 2002, 59, 1565.                                                                                            | 4.5  | 176       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Multiple Sclerosis: Magnetization Transfer MR Imaging of White Matter before Lesion Appearance on<br>T2-weighted Images. Radiology, 2000, 215, 824-830.                                                                              | 7.3  | 174       |
| 38 | Axonal metabolic recovery in multiple sclerosis patients treated with interferon β-1b. Journal of Neurology, 2001, 248, 979-986.                                                                                                     | 3.6  | 171       |
| 39 | Manifestations of early brain recovery associated with abstinence from alcoholism. Brain, 2006, 130, 36-47.                                                                                                                          | 7.6  | 169       |
| 40 | Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology, 2012, 78, 309-314.                                                                                                              | 1.1  | 169       |
| 41 | Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2016, 87, jnnp-2014-309903.                                                                   | 1.9  | 162       |
| 42 | Relevance of cognitive deterioration in early relapsing-remitting MS: a 3-year follow-up study.<br>Multiple Sclerosis Journal, 2010, 16, 1474-1482.                                                                                  | 3.0  | 157       |
| 43 | The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Reviews Neurology, 2018, 14, 199-213.                                                                                                  | 10.1 | 157       |
| 44 | Optimizing treatment success in multiple sclerosis. Journal of Neurology, 2016, 263, 1053-1065.                                                                                                                                      | 3.6  | 155       |
| 45 | MACNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nature Reviews Neurology, 2020, 16, 171-182.                                                                            | 10.1 | 150       |
| 46 | Age-related Changes in Conventional, Magnetization Transfer, and Diffusion-Tensor MR Imaging<br>Findings: Study with Whole-Brain Tissue Histogram Analysis1ÂÂ. Radiology, 2003, 227, 731-738.                                        | 7.3  | 134       |
| 47 | Primary <scp>P</scp> rogressive <scp>M</scp> ultiple <scp>S</scp> clerosis <scp>E</scp> volving<br><scp>F</scp> rom <scp>R</scp> adiologically <scp>I</scp> solated <scp>S</scp> yndrome. Annals of<br>Neurology, 2016, 79, 288-294. | 5.3  | 130       |
| 48 | Oxidative phosphorylation defect in the brains of carriers of the tRNAleu(UUR) A3243G mutation in a MELAS pedigree. Annals of Neurology, 2000, 47, 179-185.                                                                          | 5.3  | 125       |
| 49 | Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain, 2001, 124, 121-131.                                                                                           | 7.6  | 122       |
| 50 | Magnetic Resonance Techniques in Multiple Sclerosis. Archives of Neurology, 2011, 68, 1514.                                                                                                                                          | 4.5  | 120       |
| 51 | Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA<br>Neurology, 2019, 76, 1446.                                                                                                      | 9.0  | 119       |
| 52 | Extensive cortical inflammation is associated with epilepsy in multiple sclerosis. Journal of Neurology, 2008, 255, 581-586.                                                                                                         | 3.6  | 116       |
| 53 | Cognitive reserve and cortical atrophy in multiple sclerosis. Neurology, 2013, 80, 1728-1733.                                                                                                                                        | 1.1  | 113       |
| 54 | Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet<br>Neurology, The, 2019, 18, 185-197.                                                                                              | 10.2 | 110       |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nature Reviews<br>Neurology, 2015, 11, 676-686.                                                            | 10.1 | 109       |
| 56 | Magnetization transfer can predict clinical evolution in patients with multiple sclerosis. Journal of Neurology, 2002, 249, 662-668.                                                       | 3.6  | 102       |
| 57 | Defining and scoring response to IFN-β in multiple sclerosis. Nature Reviews Neurology, 2013, 9, 504-512.                                                                                  | 10.1 | 101       |
| 58 | Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 851-858. | 1.9  | 101       |
| 59 | Longitudinal and cross-sectional analysis of atrophy in Alzheimer's disease: Cross-validation of BSI,<br>SIENA and SIENAX. NeuroImage, 2007, 36, 1200-1206.                                | 4.2  | 100       |
| 60 | Clinical use of brain volumetry. Journal of Magnetic Resonance Imaging, 2013, 37, 1-14.                                                                                                    | 3.4  | 100       |
| 61 | Structural <scp>MRI</scp> correlates of cognitive impairment in patients with multiple sclerosis.<br>Human Brain Mapping, 2016, 37, 1627-1644.                                             | 3.6  | 99        |
| 62 | Assessing response to interferon-Î <sup>2</sup> in a multicenter dataset of patients with MS. Neurology, 2016, 87, 134-140.                                                                | 1.1  | 98        |
| 63 | Structural and Functional Brain Changes beyond Visual System in Patients with Advanced Glaucoma.<br>PLoS ONE, 2014, 9, e105931.                                                            | 2.5  | 91        |
| 64 | The hippocampus in multiple sclerosis. Lancet Neurology, The, 2018, 17, 918-926.                                                                                                           | 10.2 | 90        |
| 65 | Unraveling treatment response in multiple sclerosis. Neurology, 2019, 92, 180-192.                                                                                                         | 1.1  | 88        |
| 66 | Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurology, 2021, 78, 414.                                                                                        | 9.0  | 86        |
| 67 | DMTs and Covidâ€19 severity in MS: a pooled analysis from Italy and France. Annals of Clinical and Translational Neurology, 2021, 8, 1738-1744.                                            | 3.7  | 86        |
| 68 | Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 501-507. | 1.9  | 85        |
| 69 | MR Spectroscopy in Multiple Sclerosis. Journal of Neuroimaging, 2007, 17, 31S-35S.                                                                                                         | 2.0  | 84        |
| 70 | Optimizing therapy early in multiple sclerosis: An evidence-based view. Multiple Sclerosis and Related<br>Disorders, 2015, 4, 460-469.                                                     | 2.0  | 83        |
| 71 | Intercenter differences in diffusion tensor MRI acquisition. Journal of Magnetic Resonance Imaging, 2010, 31, 1458-1468.                                                                   | 3.4  | 81        |
| 72 | Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 2021, 144, 1296-1311.                                                                   | 7.6  | 81        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | MR correlates of cerebral atrophy in patients with multiple sclerosis. Journal of Neurology, 2002, 249, 1072-1077.                                                                                                           | 3.6  | 79        |
| 74 | Longitudinal Assessment of Multiple Sclerosis with the Brainâ€Age Paradigm. Annals of Neurology, 2020, 88, 93-105.                                                                                                           | 5.3  | 79        |
| 75 | In vivo differentiation of astrocytic brain tumors and isolated demyelinating lesions of the type seen<br>in multiple sclerosis using1H magnetic resonance spectroscopic imaging. Annals of Neurology, 1998,<br>44, 273-278. | 5.3  | 78        |
| 76 | Relevance of Brain Lesion Location to Cognition in Relapsing Multiple Sclerosis. PLoS ONE, 2012, 7, e44826.                                                                                                                  | 2.5  | 78        |
| 77 | Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Multiple Sclerosis Journal, 2018, 24, 214-221.                                                                        | 3.0  | 77        |
| 78 | Early changes of brain connectivity in primary open angle glaucoma. Human Brain Mapping, 2016, 37,<br>4581-4596.                                                                                                             | 3.6  | 76        |
| 79 | Brain damage as detected by magnetization transfer imaging is less pronounced in benign than in early relapsing multiple sclerosis. Brain, 2006, 129, 2008-2016.                                                             | 7.6  | 75        |
| 80 | Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis.<br>PLoS ONE, 2011, 6, e19452.                                                                                           | 2.5  | 74        |
| 81 | Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. Journal of the Neurological Sciences, 2005, 233, 203-208.                                                                                | 0.6  | 69        |
| 82 | Imaging brain damage in first-degree relatives of sporadic and familial multiple sclerosis. Annals of Neurology, 2006, 59, 634-639.                                                                                          | 5.3  | 69        |
| 83 | Connectivityâ€based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: A multicenter study. Human Brain Mapping, 2015, 36, 2809-2825.                                         | 3.6  | 69        |
| 84 | Brain Atrophy Assessment in Multiple Sclerosis: Importance and Limitations. Neuroimaging Clinics of North America, 2008, 18, 675-686.                                                                                        | 1.0  | 68        |
| 85 | The Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy<br>(CADASIL) Scale. Stroke, 2012, 43, 2871-2876.                                                                              | 2.0  | 68        |
| 86 | MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nature Reviews<br>Neurology, 2012, 8, 13-21.                                                                                                  | 10.1 | 67        |
| 87 | Voxel-wise assessment of progression of regional brain atrophy in relapsing-remitting multiple sclerosis. Journal of the Neurological Sciences, 2009, 282, 55-60.                                                            | 0.6  | 66        |
| 88 | Towards a better understanding of <i>pseudoatrophy</i> in the brain of multiple sclerosis patients.<br>Multiple Sclerosis Journal, 2015, 21, 675-676.                                                                        | 3.0  | 64        |
| 89 | Diffuse brain damage in normal tension glaucoma. Human Brain Mapping, 2018, 39, 532-541.                                                                                                                                     | 3.6  | 64        |
| 90 | Brain metabolic changes suggestive of axonal damage in radiologically isolated syndrome. Neurology, 2013, 80, 2090-2094.                                                                                                     | 1.1  | 63        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Imaging outcome measures for progressive multiple sclerosis trials. Multiple Sclerosis Journal, 2017, 23, 1614-1626.                                                                                 | 3.0 | 62        |
| 92  | Enhanced brain extraction improves the accuracy of brain atrophy estimation. NeuroImage, 2008, 40, 583-589.                                                                                          | 4.2 | 58        |
| 93  | Large-scale, multicentre, quantitative MRI study of brain and cord damage in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 455-464.                                  | 3.0 | 58        |
| 94  | Moving toward earlier treatment of multiple sclerosis: Findings from a decade of clinical trials and implications for clinical practice. Multiple Sclerosis and Related Disorders, 2014, 3, 147-155. | 2.0 | 57        |
| 95  | <sup>11</sup> C-PBR28 and <sup>18</sup> F-PBR111 Detect White Matter Inflammatory Heterogeneity in<br>Multiple Sclerosis. Journal of Nuclear Medicine, 2017, 58, 1477-1482.                          | 5.0 | 57        |
| 96  | 1H-MR Spectroscopy in Traumatic Brain Injury. Neurocritical Care, 2011, 14, 127-133.                                                                                                                 | 2.4 | 55        |
| 97  | Relationship of white and gray matter abnormalities to clinical and genetic features in myotonic dystrophy type 1. NeuroImage: Clinical, 2016, 11, 678-685.                                          | 2.7 | 55        |
| 98  | Effect of Fingolimod on Brain Volume Loss in Patients with Multiple Sclerosis. CNS Drugs, 2017, 31, 289-305.                                                                                         | 5.9 | 55        |
| 99  | Reduced dynamics of functional connectivity and cognitive impairment in multiple sclerosis. Multiple<br>Sclerosis Journal, 2020, 26, 476-488.                                                        | 3.0 | 54        |
| 100 | Breakthrough SARS-CoV-2 infections after COVID-19 mRNA vaccination in MS patients on disease modifying therapies during the Delta and the Omicron waves in Italy. EBioMedicine, 2022, 80, 104042.    | 6.1 | 54        |
| 101 | Location of brain lesions predicts conversion of clinically isolated syndromes to multiple sclerosis.<br>Neurology, 2013, 80, 234-241.                                                               | 1.1 | 53        |
| 102 | A Novel NOTCH3 Frameshift Deletion and Mitochondrial Abnormalities in a Patient With CADASIL.<br>Archives of Neurology, 2004, 61, 942.                                                               | 4.5 | 52        |
| 103 | Magnetic resonance active lesions as individual-level surrogate for relapses in multiple sclerosis.<br>Multiple Sclerosis Journal, 2011, 17, 541-549.                                                | 3.0 | 52        |
| 104 | Measuring Brain Atrophy in Multiple Sclerosis. Journal of Neuroimaging, 2007, 17, 10S-15S.                                                                                                           | 2.0 | 51        |
| 105 | Abnormal connectivity of the sensorimotor network in patients with MS: A multicenter fMRI study.<br>Human Brain Mapping, 2009, 30, 2412-2425.                                                        | 3.6 | 51        |
| 106 | Evidence of diffuse damage in frontal and occipital cortex in the brain of patients with post-traumatic stress disorder. Neurological Sciences, 2012, 33, 59-68.                                     | 1.9 | 51        |
| 107 | Relevance of hypointense brain MRI lesions for long-term worsening of clinical disability in relapsing<br>multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 214-219.                         | 3.0 | 51        |
| 108 | The burden of microstructural damage modulates cortical activation in elderly subjects with MCI and leukoâ€araiosis. A DTI and fMRI study. Human Brain Mapping, 2014, 35, 819-830.                   | 3.6 | 48        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Assessing Neuronal Metabolism In Vivo by Modeling Imaging Measures. Journal of Neuroscience, 2010, 30, 15030-15033.                                                                                                                                  | 3.6 | 47        |
| 110 | Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis: Assessment with MR<br>Imaging. Radiology, 2018, 288, 554-564.                                                                                                              | 7.3 | 47        |
| 111 | Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. NeuroImage: Clinical, 2018, 19, 466-475.                                                                                    | 2.7 | 47        |
| 112 | Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Multiple Sclerosis Journal, 2018, 24, 222-226.                                   | 3.0 | 47        |
| 113 | Guidelines from The Italian Neurological and Neuroradiological Societies for the use of magnetic<br>resonance imaging in daily life clinical practice of multiple sclerosis patients. Neurological Sciences,<br>2013, 34, 2085-2093.                 | 1.9 | 46        |
| 114 | Influence of Apolipoprotein E ϵ4 Genotype on Brain Tissue Integrity in Relapsing-Remitting Multiple<br>Sclerosis. Archives of Neurology, 2004, 61, 536.                                                                                              | 4.5 | 45        |
| 115 | Intercenter agreement of brain atrophy measurement in multiple sclerosis patients using<br>manuallyâ€edited SIENA and SIENAX. Journal of Magnetic Resonance Imaging, 2007, 26, 881-885.                                                              | 3.4 | 45        |
| 116 | Automated identification of brain new lesions in multiple sclerosis using subtraction images. Journal of Magnetic Resonance Imaging, 2014, 39, 1543-1549.                                                                                            | 3.4 | 45        |
| 117 | Cognition in multiple sclerosis: relevance of lesions, brain atrophy and proton MR spectroscopy.<br>Neurological Sciences, 2010, 31, 245-248.                                                                                                        | 1.9 | 44        |
| 118 | The spectrum of magnetic resonance findings in cerebrotendinous xanthomatosis: redefinition and evidence of new markers of disease progression. Journal of Neurology, 2017, 264, 862-874.                                                            | 3.6 | 43        |
| 119 | Severe metabolic abnormalities in the white matter of patients with vacuolating megalencephalic<br>leukoencephalopathy with subcortical cysts. A proton MR spectroscopic imaging study. Journal of<br>Neurology, 2001, 248, 403-409.                 | 3.6 | 42        |
| 120 | Acute Unilateral Visual Loss as the First Symptom of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Archives of Neurology, 2004, 61, 577.                                                               | 4.5 | 42        |
| 121 | Appraisal of Brain Connectivity in Radiologically Isolated Syndrome by Modeling Imaging Measures.<br>Journal of Neuroscience, 2015, 35, 550-558.                                                                                                     | 3.6 | 42        |
| 122 | SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage: Clinical, 2019, 24, 102011.                              | 2.7 | 42        |
| 123 | Lifespan normative data on rates of brain volume changes. Neurobiology of Aging, 2019, 81, 30-37.                                                                                                                                                    | 3.1 | 40        |
| 124 | Voxel-Based Assessment of Differences in Damage and Distribution of White Matter Lesions Between<br>Patients With Primary Progressive and Relapsing-Remitting Multiple Sclerosis. Archives of Neurology,<br>2008, 65, 236-43.                        | 4.5 | 38        |
| 125 | Subcutaneous interferon β-1a in the treatment of clinically isolated syndromes: 3-year and 5-year results of the phase III dosing frequency-blind multicentre REFLEXION study. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 285-294. | 1.9 | 38        |
| 126 | Systemic Blood Pressure Profile in Cerebral Autosomal Dominant Arteriopathy With Subcortical<br>Infarcts and Leukoencephalopathy. Stroke, 2005, 36, 2554-2558.                                                                                       | 2.0 | 37        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Resting state fMRI regional homogeneity correlates with cognition measures in subcortical vascular cognitive impairment. Journal of the Neurological Sciences, 2017, 373, 1-6.                                            | 0.6 | 36        |
| 128 | N-acetylaspartate: Usefulness as an indicator of viable neuronal tissue. Annals of Neurology, 2001, 50, 823-823.                                                                                                          | 5.3 | 35        |
| 129 | Right-to-Left Shunt in CADASIL Patients. Stroke, 2008, 39, 2155-2157.                                                                                                                                                     | 2.0 | 34        |
| 130 | Operationalizing mild cognitive impairment criteria in small vessel disease: the VMCI-Tuscany Study. , 2016, 12, 407-418.                                                                                                 |     | 34        |
| 131 | Defining brain volume cutoffs to identify clinically relevant atrophy in RRMS. Multiple Sclerosis<br>Journal, 2017, 23, 656-664.                                                                                          | 3.0 | 34        |
| 132 | Neurodegeneration in friedreich's ataxia is associated with a mixed activation pattern of the brain. A<br>fMRI study. Human Brain Mapping, 2012, 33, 1780-1791.                                                           | 3.6 | 33        |
| 133 | Genome-Wide Genotyping Demonstrates a Polygenic Risk Score Associated With White Matter<br>Hyperintensity Volume in CADASIL. Stroke, 2014, 45, 968-972.                                                                   | 2.0 | 33        |
| 134 | Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding. NeuroImage, 2019, 202, 116056.                                                | 4.2 | 32        |
| 135 | Pathological cut-offs of global and regional brain volume loss in multiple sclerosis. Multiple<br>Sclerosis Journal, 2019, 25, 541-553.                                                                                   | 3.0 | 32        |
| 136 | Basic concepts of advanced MRI techniques. Neurological Sciences, 2008, 29, 290-295.                                                                                                                                      | 1.9 | 31        |
| 137 | Rapid benefits of a new formulation of subcutaneous interferon beta-1a in relapsing—remitting<br>multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 888-892.                                                       | 3.0 | 31        |
| 138 | Efficacy and safety of subcutaneous interferon beta-1a in relapsing–remitting multiple sclerosis:<br>Further outcomes from the IMPROVE study. Journal of the Neurological Sciences, 2012, 312, 97-101.                    | 0.6 | 31        |
| 139 | Neocortical volume decrease in relapsing–remitting multiple sclerosis with mild cognitive<br>impairment. Journal of the Neurological Sciences, 2006, 245, 195-199.                                                        | 0.6 | 30        |
| 140 | Cortical functional reorganization and its relationship with brain structural damage in patients with benign multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 1326-1334.                                         | 3.0 | 30        |
| 141 | A human post-mortem brain model for the standardization of multi-centre MRI studies. NeuroImage, 2015, 110, 11-21.                                                                                                        | 4.2 | 30        |
| 142 | A practical review of the neuropathology and neuroimaging of multiple sclerosis. Practical Neurology, 2016, 16, 279-287.                                                                                                  | 1.1 | 30        |
| 143 | Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment. NeuroImage: Clinical, 2019, 24, 101990. | 2.7 | 30        |
| 144 | Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective. JAMA Neurology, 2021, 78, 351.                                                                                                                  | 9.0 | 30        |

| #   | Article                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | <i>APOE É&gt;</i> 2 is associated with white matter hyperintensity volume in CADASIL. Journal of Cerebral<br>Blood Flow and Metabolism, 2016, 36, 199-203.                                                                                                                                                      | 4.3 | 28        |
| 146 | Alterations in Functional and Structural Connectivity in Pediatric-Onset Multiple Sclerosis. PLoS ONE, 2016, 11, e0145906.                                                                                                                                                                                      | 2.5 | 28        |
| 147 | Cortical damage in brains of patients with adult-form of myotonic dystrophy type 1 and no or minimal<br>MRI abnormalities. Journal of Neurology, 2006, 253, 1471-1477.                                                                                                                                          | 3.6 | 27        |
| 148 | Adult polyglucosan body disease: Proton magnetic resonance spectroscopy of the brain and novel mutation in the <i>GBE1</i> gene. Muscle and Nerve, 2008, 37, 530-536.                                                                                                                                           | 2.2 | 27        |
| 149 | Plasma Levels of Asymmetric Dimethylarginine in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarct and Leukoencephalopathy. Cerebrovascular Diseases, 2008, 26, 636-640.                                                                                                                         | 1.7 | 27        |
| 150 | Effective Utilization of MRIÂin the Diagnosis and Management of Multiple Sclerosis. Neurologic<br>Clinics, 2018, 36, 27-34.                                                                                                                                                                                     | 1.8 | 27        |
| 151 | Intracellular phosphates in inclusion body myositis?A 31P magnetic resonance spectroscopy study. ,<br>1998, 21, 1523-1525.                                                                                                                                                                                      |     | 26        |
| 152 | Cardiac Autonomic Nervous System and Risk of Arrhythmias in Cerebral Autosomal Dominant<br>Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL). Stroke, 2007, 38, 276-280.                                                                                                                 | 2.0 | 26        |
| 153 | Risk and Determinants of Dementia in Patients with Mild Cognitive Impairment and Brain Subcortical<br>Vascular Changes: A Study of Clinical, Neuroimaging, and Biological Markers—The VMCI-Tuscany<br>Study: Rationale, Design, and Methodology. International Journal of Alzheimer's Disease, 2012, 2012, 1-7. | 2.0 | 26        |
| 154 | Long-term assessment of no evidence of disease activity in relapsing-remitting MS. Neurology, 2015, 85, 1722-1723.                                                                                                                                                                                              | 1.1 | 26        |
| 155 | Advanced Structural and Functional Brain MRI in Multiple Sclerosis. Seminars in Neurology, 2016, 36, 163-176.                                                                                                                                                                                                   | 1.4 | 26        |
| 156 | A multicentre study of motor functional connectivity changes in patients with multiple sclerosis.<br>European Journal of Neuroscience, 2011, 33, 1256-1263.                                                                                                                                                     | 2.6 | 25        |
| 157 | Retinal Nerve Fiber Layer Thinning in CADASIL: An Optical Coherence Tomography and MRI Study.<br>Cerebrovascular Diseases, 2011, 31, 77-82.                                                                                                                                                                     | 1.7 | 25        |
| 158 | Estimates of age-dependent cutoffs for pathological brain volume loss using SIENA/FSL—a<br>longitudinal brain volumetry study in healthy adults. Neurobiology of Aging, 2018, 65, 1-6.                                                                                                                          | 3.1 | 25        |
| 159 | Self-paced frequency of a simple motor task and brain activation. NeuroImage, 2007, 38, 402-412.                                                                                                                                                                                                                | 4.2 | 24        |
| 160 | Peripheral neuropathy in CADASIL. Journal of Neurology, 2005, 252, 1206-1209.                                                                                                                                                                                                                                   | 3.6 | 23        |
| 161 | Diffuse structural and metabolic brain changes in Fabry disease. Journal of Neurology, 2006, 253, 434-440.                                                                                                                                                                                                      | 3.6 | 23        |
| 162 | Isoprostanes in clinically isolated syndrome and early multiple sclerosis as biomarkers of tissue damage and predictors of clinical course. Multiple Sclerosis Journal, 2013, 19, 411-417.                                                                                                                      | 3.0 | 23        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Efficacy of subcutaneous interferon Â-1a on MRI outcomes in a randomised controlled trial of patients with clinically isolated syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 647-653.      | 1.9 | 23        |
| 164 | Effect of fingolimod on diffuse brain tissue damage in relapsing-remitting multiple sclerosis patients.<br>Multiple Sclerosis and Related Disorders, 2016, 7, 98-101.                                                | 2.0 | 23        |
| 165 | APOE-ε4 is not associated with cognitive impairment in relapsing—remitting multiple sclerosis.<br>Multiple Sclerosis Journal, 2009, 15, 1489-1494.                                                                   | 3.0 | 21        |
| 166 | Subclinical motor impairment assessed with an engineered glove correlates with magnetic resonance<br>imaging tissue damage in radiologically isolated syndrome. European Journal of Neurology, 2019, 26,<br>162-167. | 3.3 | 21        |
| 167 | Gray matter atrophy cannot be fully explained by white matter damage in patients with MS. Multiple<br>Sclerosis Journal, 2021, 27, 39-51.                                                                            | 3.0 | 21        |
| 168 | Clinical Course of Two Italian Siblings with Ataxia-Telangiectasia-Like Disorder. Cerebellum, 2013, 12, 596-599.                                                                                                     | 2.5 | 20        |
| 169 | Prognostic biomarkers of IFNb therapy in multiple sclerosis patients. Multiple Sclerosis Journal, 2015, 21, 894-904.                                                                                                 | 3.0 | 20        |
| 170 | SIENAâ€XL for improving the assessment of gray and white matter volume changes on brain MRI. Human<br>Brain Mapping, 2018, 39, 1063-1077.                                                                            | 3.6 | 20        |
| 171 | Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study. NeuroImage: Clinical, 2021, 29, 102549.                                     | 2.7 | 20        |
| 172 | Structural and metabolic damage in brains of patients with SPG11-related spastic paraplegia as detected by quantitative MRI. Journal of Neurology, 2011, 258, 2240-2247.                                             | 3.6 | 19        |
| 173 | Pronounced Structural and Functional Damage in Early Adult Pediatric-Onset Multiple Sclerosis with<br>No or Minimal Clinical Disability. Frontiers in Neurology, 2017, 8, 608.                                       | 2.4 | 19        |
| 174 | Peak width of skeletonized mean diffusivity (PSMD) as marker of widespread white matter tissue damage in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 27, 294-297.                            | 2.0 | 19        |
| 175 | Impaired vasoreactivity in mildly disabled CADASIL patients. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 268-274.                                                                                   | 1.9 | 18        |
| 176 | Within-patient fluctuation of brain volume estimates from short-term repeated MRI measurements using SIENA/FSL. Journal of Neurology, 2018, 265, 1158-1165.                                                          | 3.6 | 18        |
| 177 | Learning ability correlates with brain atrophy and disability progression in RRMS. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 38-43.                                                               | 1.9 | 18        |
| 178 | A Deep Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic<br>Resonance Imaging. Investigative Radiology, 2022, 57, 423-432.                                                    | 6.2 | 18        |
| 179 | Functional Evaluation of Awareness in Vegetative and Minimally Conscious State. Open Neuroimaging Journal, 2017, 11, 17-25.                                                                                          | 0.2 | 17        |
| 180 | Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis. NeuroImage: Clinical, 2022, 35, 103048.                                                         | 2.7 | 17        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Hemodynamic Evaluation of the Optic Nerve Head in Cerebral Autosomal Dominant Arteriopathy With<br>Subcortical Infarcts and Leukoencephalopathy. Archives of Neurology, 2004, 61, 1230-3.                                         | 4.5 | 16        |
| 182 | Effects of Sapropterin on Endothelium-Dependent Vasodilation in Patients With CADASIL. Stroke, 2014, 45, 2959-2966.                                                                                                               | 2.0 | 16        |
| 183 | The role of dentate nuclei in human oculomotor control: insights from cerebrotendinous<br>xanthomatosis. Journal of Physiology, 2017, 595, 3607-3620.                                                                             | 2.9 | 16        |
| 184 | DTI-derived indexes of brain WM correlate with cognitive performance in vascular MCI and small-vessel disease. A TBSS study. Brain Imaging and Behavior, 2019, 13, 594-602.                                                       | 2.1 | 16        |
| 185 | MRI quality control for the Italian Neuroimaging Network Initiative: moving towards big data in multiple sclerosis. Journal of Neurology, 2019, 266, 2848-2858.                                                                   | 3.6 | 16        |
| 186 | Changes in grey matter volume and functional connectivity in cluster headache versus migraine.<br>Brain Imaging and Behavior, 2020, 14, 496-504.                                                                                  | 2.1 | 16        |
| 187 | Predicting long-term disability outcomes in patients with MS treated with teriflunomide in TEMSO.<br>Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e379.                                                             | 6.0 | 15        |
| 188 | Exploring the role of music therapy in multiple sclerosis: brief updates from research to clinical practice. Neurological Sciences, 2019, 40, 2277-2285.                                                                          | 1.9 | 15        |
| 189 | How much do periventricular lesions assist in distinguishing migraine with aura from CIS?.<br>Neurology, 2019, 92, e1739-e1744.                                                                                                   | 1.1 | 15        |
| 190 | Analysis of frequency and severity of relapses in multiple sclerosis patients treated with cladribine<br>tablets or placebo: The CLARITY and CLARITY Extension studies. Multiple Sclerosis Journal, 2022, 28,<br>111-120.         | 3.0 | 15        |
| 191 | Quantification of brain damage in cerebrotendinous xanthomatosis with magnetization transfer MR imaging. American Journal of Neuroradiology, 2003, 24, 495-500.                                                                   | 2.4 | 15        |
| 192 | Early Reduction of MRI Activity During 6 Months of Treatment With Cladribine Tablets for Highly<br>Active Relapsing Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .                              | 6.0 | 15        |
| 193 | Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort. Journal of Neurology, 2020, 267, 3541-3554. | 3.6 | 14        |
| 194 | Dynamics of pseudoâ€atrophy in RRMS reveals predominant gray matter compartmentalization. Annals of Clinical and Translational Neurology, 2021, 8, 623-630.                                                                       | 3.7 | 14        |
| 195 | MR evidence of structural and metabolic changes in brains of patients with Werner?s syndrome.<br>Journal of Neurology, 2003, 250, 1169-1173.                                                                                      | 3.6 | 13        |
| 196 | Modeling the Distribution of New MRI Cortical Lesions in Multiple Sclerosis Longitudinal Studies.<br>PLoS ONE, 2011, 6, e26712.                                                                                                   | 2.5 | 13        |
| 197 | Patient subgroup analyses of the treatment effect of subcutaneous interferon β-1a on development of multiple sclerosis in the randomized controlled REFLEX study. Journal of Neurology, 2014, 261, 490-499.                       | 3.6 | 13        |
| 198 | Application of the DSM-5 Criteria for Major Neurocognitive Disorder to Vascular MCI Patients.<br>Dementia and Geriatric Cognitive Disorders Extra, 2018, 8, 104-116.                                                              | 1.3 | 13        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Non-progressive leukoencephalopathy with bilateral anterior temporal cysts: a case report and review of the literature. Brain and Development, 2005, 27, 73-77.                                                                                                  | 1.1 | 12        |
| 200 | A novel approach with "skeletonised MTR―measures tractâ€specific microstructural changes in early<br>primaryâ€progressive MS. Human Brain Mapping, 2014, 35, 723-733.                                                                                            | 3.6 | 12        |
| 201 | Relevance of brain lesion location for cognition in vascular mild cognitive impairment. NeuroImage:<br>Clinical, 2019, 22, 101789.                                                                                                                               | 2.7 | 12        |
| 202 | Short-term combination of glatiramer acetate with IV steroid treatment preceding treatment with GA<br>alone assessed by MRI-disease activity in patients with relapsing–remitting multiple sclerosis. Journal<br>of the Neurological Sciences, 2008, 266, 44-50. | 0.6 | 11        |
| 203 | Relationship between brain MRI lesion load and short-term disease evolution in non-disabling MS: a<br>large-scale, multicentre study. Multiple Sclerosis Journal, 2011, 17, 319-326.                                                                             | 3.0 | 11        |
| 204 | Modelling the distribution of cortical lesions in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 229-231.                                                                                                                                             | 3.0 | 11        |
| 205 | Structural and Functional Connectivity Substrates of Cognitive Impairment in Multiple Sclerosis.<br>Frontiers in Neurology, 2021, 12, 671894.                                                                                                                    | 2.4 | 11        |
| 206 | MAGNIMS recommendations for harmonization of MRI data in MS multicenter studies. NeuroImage: Clinical, 2022, 34, 102972.                                                                                                                                         | 2.7 | 11        |
| 207 | Brain mitochondrial impairment in ethylmalonic encephalopathy. Journal of Neurology, 2004, 251, 755-6.                                                                                                                                                           | 3.6 | 10        |
| 208 | MRâ€compatible device for monitoring hand tracing and writing tasks in fMRI with an application to<br>healthy subjects. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2010, 36A,<br>139-152.                                           | 0.5 | 10        |
| 209 | Altered Large-Scale Brain Functional Connectivity in Ocular Hypertension. Frontiers in Neuroscience, 2020, 14, 146.                                                                                                                                              | 2.8 | 10        |
| 210 | Effect of BDNF Val66Met polymorphism on hippocampal subfields in multiple sclerosis patients.<br>Molecular Psychiatry, 2022, 27, 1010-1019.                                                                                                                      | 7.9 | 10        |
| 211 | MRI Prognostic Factors in Multiple Sclerosis, Neuromyelitis Optica Spectrum Disorder, and Myelin<br>Oligodendrocyte Antibody Disease. Frontiers in Neurology, 2021, 12, 679881.                                                                                  | 2.4 | 9         |
| 212 | Secondary Prevention in Radiologically Isolated Syndromes and Prodromal Stages of Multiple Sclerosis. Frontiers in Neurology, 2022, 13, 787160.                                                                                                                  | 2.4 | 9         |
| 213 | The radiologically isolated syndrome dilemma: just an incidental radiological finding or presymptomatic multiple sclerosis?. Multiple Sclerosis Journal, 2013, 19, 257-258.                                                                                      | 3.0 | 8         |
| 214 | Cortical lesion counts by double inversion recovery should be part of the MRI monitoring process for all MS patients: Yes. Multiple Sclerosis Journal, 2014, 20, 537-538.                                                                                        | 3.0 | 8         |
| 215 | MAGNIMS score predicts long-term clinical disease activity-free status and confirmed disability progression in patients treated with subcutaneous interferon beta-1a. Multiple Sclerosis and Related Disorders, 2021, 49, 102790.                                | 2.0 | 8         |
| 216 | The effect of air pollution on COVIDâ€19 severity in a sample of patients with multiple sclerosis.<br>European Journal of Neurology, 2022, 29, 535-542.                                                                                                          | 3.3 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | GABA: a new imaging biomarker of neurodegeneration in multiple sclerosis?. Brain, 2015, 138, 2467-2468.                                                                                                                                                                                      | 7.6  | 7         |
| 218 | The dilemma of benign multiple sclerosis: Can we predict the risk of losing the "benign status� A<br>12-year follow-up study. Multiple Sclerosis and Related Disorders, 2018, 26, 71-73.                                                                                                     | 2.0  | 6         |
| 219 | Peak width of skeletonized mean diffusivity (PSMD) and cognitive functions in relapsing-remitting multiple sclerosis. Brain Imaging and Behavior, 2021, 15, 2228-2233.                                                                                                                       | 2.1  | 6         |
| 220 | Relation of sensorimotor and cognitive cerebellum functional connectivity with brain structural<br>damage in patients with multiple sclerosis and no disability. European Journal of Neurology, 2022, 29,<br>2036-2046.                                                                      | 3.3  | 6         |
| 221 | Evolution from a first clinical demyelinating event to multiple sclerosis in the REFLEX trial: Regional susceptibility in the conversion to multiple sclerosis at disease onset and its amenability to subcutaneous interferon betaâ€1a. European Journal of Neurology, 2022, 29, 2024-2035. | 3.3  | 6         |
| 222 | A case of ovarioleukodystrophy without eIF2B mutations. Journal of the Neurological Sciences, 2008, 268, 183-186.                                                                                                                                                                            | 0.6  | 5         |
| 223 | MRI measures should be a primary outcome endpoint in Phase III randomized, controlled trials in multiple sclerosis: Yes. Multiple Sclerosis Journal, 2014, 20, 280-281.                                                                                                                      | 3.0  | 5         |
| 224 | Unusual case of traumatic neuroma of the orbit. Orbit, 2016, 35, 62-65.                                                                                                                                                                                                                      | 0.8  | 5         |
| 225 | MRI monitoring of spinal cord changes in patients with multiple sclerosis. Current Opinion in Neurology, 2016, 29, 445-452.                                                                                                                                                                  | 3.6  | 5         |
| 226 | Validating the use of brain volume cutoffs to identify clinically relevant atrophy in RRMS. Multiple<br>Sclerosis Journal, 2019, 25, 217-223.                                                                                                                                                | 3.0  | 5         |
| 227 | Combining biomarkers to profile multiple sclerosis patients. Nature Reviews Neurology, 2020, 16, 463-464.                                                                                                                                                                                    | 10.1 | 5         |
| 228 | B Lymphocytes in Alzheimer's Disease—A Comprehensive Review. Journal of Alzheimer's Disease, 2022,<br>88, 1241-1262.                                                                                                                                                                         | 2.6  | 5         |
| 229 | Diffuse metabolic changes in the brain of patients with familial amyloid polyneuropathy. A proton<br>MRSI study. Journal of the Neurological Sciences, 2006, 246, 31-35.                                                                                                                     | 0.6  | 4         |
| 230 | Proton Magnetic Resonance Spectroscopy in Brain Metabolic Disorders. Klinische Neuroradiologie,<br>2007, 17, 223-229.                                                                                                                                                                        | 0.9  | 4         |
| 231 | Gray matter atrophy correlates with MS disability progression measured with MSFC but not EDSS.<br>Journal of the Neurological Sciences, 2009, 284, 223.                                                                                                                                      | 0.6  | 4         |
| 232 | Mapping the Progressive Treatment-Related Reduction of Active MRI Lesions in Multiple Sclerosis.<br>Frontiers in Neurology, 2020, 11, 585296.                                                                                                                                                | 2.4  | 4         |
| 233 | Vitamin D levels in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Neurological Sciences, 2017, 38, 1333-1336.                                                                                                                        | 1.9  | 3         |
| 234 | Mild gray matter atrophy in patients with long-standing multiple sclerosis and favorable clinical course. Multiple Sclerosis Journal, 2022, 28, 154-159.                                                                                                                                     | 3.0  | 3         |

0

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Characterizing 1-year development of cervical cord atrophy across different MS phenotypes: A voxel-wise, multicentre analysis. Multiple Sclerosis Journal, 2022, 28, 885-899.                                                     | 3.0 | 3         |
| 236 | Leukoencephalopathies and metabolic diseases. Neurological Sciences, 2008, 29, 323-326.                                                                                                                                           | 1.9 | 2         |
| 237 | Spinal cord imaging in multiple sclerosis. Neurology, 2014, 83, 1306-1307.                                                                                                                                                        | 1.1 | 2         |
| 238 | Advanced MRI measures like DTI or fMRI should be outcome measures in future clinical trials –<br>Commentary. Multiple Sclerosis Journal, 2017, 23, 1458-1460.                                                                     | 3.0 | 2         |
| 239 | Co-occurrence of DMPK expansion and CLCN1 mutation in a patient with myotonia. Neurological Sciences, 2021, 42, 5365-5368.                                                                                                        | 1.9 | 2         |
| 240 | Granular cell tumor of the orbit: pathological features and treatment. Journal of Neurosurgical Sciences, 2017, 61, 342-343.                                                                                                      | 0.6 | 2         |
| 241 | Twelve-year monitoring of a patient with megalencephalic leukoencephalopathy with subcortical cysts. Neurological Sciences, 2014, 35, 1249-53.                                                                                    | 1.9 | 1         |
| 242 | Response to †Does cladribine have an impact on brain atrophy in people with relapsing remitting multiple sclerosis?' by Schiffmann et al Multiple Sclerosis Journal, 2018, 24, 1388-1389.                                         | 3.0 | 1         |
| 243 | The IN-DEEP project "INtegrating and Deriving Evidence, Experiences, Preferences†a web information<br>model on magnetic resonance imaging for people with multiple sclerosis. Journal of Neurology, 2020,<br>267, 2421-2431.      | 3.6 | 1         |
| 244 | MRS in brain tumors. , 0, , 61-90.                                                                                                                                                                                                |     | 1         |
| 245 | MRS in cerebral metabolic disorders. , 0, , 180-211.                                                                                                                                                                              |     | 1         |
| 246 | Response to the letter "Progression of gray matter atrophy and its association with white matter<br>lesions in relapsing–remitting multiple sclerosis―by Bendfeldt et al Journal of the Neurological<br>Sciences, 2009, 285, 269. | 0.6 | 0         |
| 247 | Multiple Sclerosis and Inflammatory Diseases. , 2014, , 162-171.                                                                                                                                                                  |     | 0         |
| 248 | Response to Dr Boyko's letter: â€~Radiologically isolated syndrome with oligoclonal bands in CSF<br>(RIS + OCB) can be classified as highly MS-risk group'. Multiple Sclerosis Journal, 2020, 26, 871-871.                        | 3.0 | 0         |
| 249 | Introduction to MR spectroscopy in vivo. , 2009, , 1-18.                                                                                                                                                                          |     | 0         |
|     |                                                                                                                                                                                                                                   |     |           |

250 MRS in infectious, inflammatory, and demyelinating lesions. , 0, , 110-130.