Venkatraju Jella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7309694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites. Nano Energy, 2019, 57, 74-93.	16.0	122
2	Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films. Nano Energy, 2018, 53, 46-56.	16.0	111
3	An eco-friendly flexible piezoelectric energy harvester that delivers high output performance is based on lead-free MASnI3 films and MASnI3-PVDF composite films. Nano Energy, 2019, 57, 911-923.	16.0	94
4	Enhanced piezoelectric output performance via control of dielectrics in Fe2+-incorporated MAPbI3 perovskite thin films: Flexible piezoelectric generators. Nano Energy, 2018, 49, 247-256.	16.0	68
5	Light-Driven Piezo- and Triboelectricity in Organic–Inorganic Metal Trihalide Perovskite toward Mechanical Energy Harvesting and Self-powered Sensor Application. ACS Applied Materials & Interfaces, 2020, 12, 50472-50483.	8.0	46
6	Enhanced thermoelectric properties of flexible Cu _{2â^'x} Se (x ≥ 0.25) NW/polyvinylidene fluoride composite films fabricated via simple mechanical pressing. Journal of Materials Chemistry C, 2017, 5, 763-769.	5.5	45
7	Unveiling Predominant Air-Stable Organotin Bromide Perovskite toward Mechanical Energy Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 16469-16480.	8.0	45
8	ZnAl–LDH-induced electroactive β-phase and controlled dielectrics of PVDF for a high-performance triboelectric nanogenerator for humidity and pressure sensing applications. Journal of Materials Chemistry A, 2021, 9, 15993-16005.	10.3	45
9	A novel approach to ambient energy (thermoelectric, piezoelectric and solar-TPS) harvesting: Realization of a single structured TPS-fusion energy device using MAPbI3. Nano Energy, 2018, 52, 11-21.	16.0	32
10	Synergistic contribution of flexoelectricity and piezoelectricity towards a stretchable robust nanogenerator for wearable electronics. Nano Energy, 2022, 91, 106691.	16.0	31
11	Halide (Cl/Br)-Incorporated Organic–Inorganic Metal Trihalide Perovskite Films: Study and Investigation of Dielectric Properties and Mechanical Energy Harvesting Performance. ACS Applied Electronic Materials, 2020, 2, 2579-2590.	4.3	30
12	The Recent Progress on Halide Perovskite-Based Self-Powered Sensors Enabled by Piezoelectric and Triboelectric Effects. Nanoenergy Advances, 2021, 1, 3-31.	7.7	27
13	Low temperature synthesis of various transition metal oxides and their antibacterial activity against multidrug resistance bacterial pathogens. Korean Journal of Chemical Engineering, 2015, 32, 911-916.	2.7	18
14	Most facile synthesis of Zn-Al:LDHs nanosheets at room temperature via environmentally friendly process and their high power generation by flexoelectricity. Materials Today Energy, 2018, 10, 254-263.	4.7	14
15	Direct Growth of Highly Conductive Largeâ€Area Stretchable Graphene. Advanced Science, 2021, 8, 2003697.	11.2	11
16	Enhanced Output Performance of Nanogenerator Based on Composite of Poly Vinyl Fluoride (PVDF) and Zn:Al Layered-Double Hydroxides (LDHs) Nanosheets. Transactions on Electrical and Electronic Materials, 2018, 19, 403-411.	1.9	10
17	Antireflective, Transparent, Water-Resistant, and Antibacterial Zn-Doped Silicon Oxide Thin Films for Touchscreen-Based Display Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 2136-2147.	6.7	10
18	Enhanced thermoelectric properties of Ge 2 Sb 2 Te 5 thin films through the control of crystal structure. Current Applied Physics, 2017, 17, 744-750.	2.4	8

#	Article	IF	CITATIONS
19	High-Performance Flexible Ultraviolet Photodetectors Based on Facilely Synthesized Ecofriendly ZnAl:LDH Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 61434-61446.	8.0	6
20	Thermoelectric properties of nanocomposite n-type Cr2O3/Cr thin films deposited by a reactive sputtering. Vacuum, 2017, 140, 71-75.	3.5	4
21	Organic/Inorganic Halide Perovskites for Mechanical Energy Harvesting Applications. , 0, , .		0