Fei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7308188/publications.pdf

Version: 2024-02-01

114418 76294 4,821 146 40 63 citations h-index g-index papers 157 157 157 3712 docs citations citing authors times ranked all docs

#	Article	IF	Citations
1	Application of Deep Learning in Food: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1793-1811.	5.9	291
2	Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. Journal of Food Engineering, 2016, 179, 11-18.	2.7	166
3	Rice Seed Cultivar Identification Using Near-Infrared Hyperspectral Imaging and Multivariate Data Analysis. Sensors, 2013, 13, 8916-8927.	2.1	149
4	Application of Visible and Near Infrared Hyperspectral Imaging to Differentiate Between Fresh and Frozen–Thawed Fish Fillets. Food and Bioprocess Technology, 2013, 6, 2931-2937.	2.6	144
5	Application of Hyperspectral Imaging and Chemometric Calibrations for Variety Discrimination of Maize Seeds. Sensors, 2012, 12, 17234-17246.	2.1	140
6	Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis. Analytica Chimica Acta, 2008, 615, 10-17.	2.6	120
7	Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers. Scientific Reports, 2017, 7, 4125.	1.6	119
8	Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. TrAC - Trends in Analytical Chemistry, 2016, 85, 260-272.	5.8	107
9	Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy. Analytica Chimica Acta, 2008, 610, 196-204.	2.6	106
10	Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosystems Engineering, 2013, 115, 56-65.	1.9	106
11	Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging. Scientific Reports, 2016, 6, 35393.	1.6	99
12	Ripeness Classification of Astringent Persimmon Using Hyperspectral Imaging Technique. Food and Bioprocess Technology, 2014, 7, 1371-1380.	2.6	98
13	Variable selection in visible/near infrared spectra for linear and nonlinear calibrations: A case study to determine soluble solids content of beer. Analytica Chimica Acta, 2009, 635, 45-52.	2.6	97
14	Application of Near-Infrared Hyperspectral Imaging with Variable Selection Methods to Determine and Visualize Caffeine Content of Coffee Beans. Food and Bioprocess Technology, 2017, 10, 213-221.	2.6	93
15	Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar. Food Chemistry, 2009, 115, 1430-1436.	4.2	89
16	Hyperspectral imaging for seed quality and safety inspection: a review. Plant Methods, 2019, 15, 91.	1.9	88
17	Detection of Organic Acids and pH of Fruit Vinegars Using Near-Infrared Spectroscopy and Multivariate Calibration. Food and Bioprocess Technology, 2011, 4, 1331-1340.	2.6	80
18	Hyperspectral Imaging for Mapping of Total Nitrogen Spatial Distribution in Pepper Plant. PLoS ONE, 2014, 9, e116205.	1.1	80

#	Article	IF	CITATIONS
19	Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines. Journal of Food Engineering, 2007, 83, 430-435.	2.7	71
20	Measurement of Soluble Solid Contents and pH of White Vinegars Using VIS/NIR Spectroscopy and Least Squares Support Vector Machine. Food and Bioprocess Technology, 2014, 7, 54-61.	2.6	71
21	Application of Visible and Near-Infrared Hyperspectral Imaging to Determine Soluble Protein Content in Oilseed Rape Leaves. Sensors, 2015, 15, 16576-16588.	2.1	70
22	Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
23	Identification of Rice Seed-Derived Fusarium spp. and Development of LAMP Assay against Fusarium fujikuroi. Pathogens, 2021, 10, 1.	1.2	69
24	Application of Visible and Near-Infrared Hyperspectral Imaging for Detection of Defective Features in Loquat. Food and Bioprocess Technology, 2014, 7, 3077-3087.	2.6	65
25	Rapid Classification of Wheat Grain Varieties Using Hyperspectral Imaging and Chemometrics. Applied Sciences (Switzerland), 2019, 9, 4119.	1.3	65
26	Detection of adulteration in food based on nondestructive analysis techniques: a review. Critical Reviews in Food Science and Nutrition, 2021, 61, 2351-2371.	5.4	63
27	Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety Discrimination of Soil. Scientific Reports, 2016, 6, 27574.	1.6	61
28	Moisture Influence Reducing Method for Heavy Metals Detection in Plant Materials Using Laser-Induced Breakdown Spectroscopy: A Case Study for Chromium Content Detection in Rice Leaves. Analytical Chemistry, 2017, 89, 7593-7600.	3.2	59
29	Rapid and non-destructive measurement of spinach pigments content during storage using hyperspectral imaging with chemometrics. Measurement: Journal of the International Measurement Confederation, 2017, 97, 149-155.	2.5	59
30	Application of Hyperspectral Imaging to Detect Sclerotinia sclerotiorum on Oilseed Rape Stems. Sensors, 2018, 18, 123.	2.1	55
31	Co-localization of major quantitative trait loci for pod size and weight to a 3.7ÂcM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017, 18, 58.	1.2	54
32	Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy. Sensors, 2018, 18, 1526.	2.1	52
33	Rapid and Nondestructive Measurement of Rice Seed Vitality of Different Years Using Near-Infrared Hyperspectral Imaging. Molecules, 2019, 24, 2227.	1.7	52
34	Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis. Scientific Reports, 2018, 8, 2166.	1.6	49
35	Using hyperspectral analysis as a potential high throughput phenotyping tool in GWAS for protein content of rice quality. Plant Methods, 2019, 15, 54.	1.9	48
36	Application of near-infrared hyperspectral imaging for variety identification of coated maize kernels with deep learning. Infrared Physics and Technology, 2020, 111, 103550.	1.3	48

#	Article	IF	CITATIONS
37	Classification of brands of instant noodles using Vis/NIR spectroscopy and chemometrics. Food Research International, 2008, 41, 562-567.	2.9	45
38	Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis. Sensors, 2018, 18, 705.	2.1	44
39	Requirement of LaeA, VeA, and VelB on Asexual Development, Ochratoxin A Biosynthesis, and Fungal Virulence in Aspergillus ochraceus. Frontiers in Microbiology, 2019, 10, 2759.	1.5	44
40	Practicability investigation of using near-infrared hyperspectral imaging to detect rice kernels infected with rice false smut in different conditions. Sensors and Actuators B: Chemical, 2020, 308, 127696.	4.0	44
41	Applying Near-Infrared Spectroscopy and Chemometrics to Determine Total Amino Acids in Herbicide-Stressed Oilseed Rape Leaves. Food and Bioprocess Technology, 2011, 4, 1314-1321.	2.6	42
42	Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Scientific Reports, 2017, 7, 44551.	1.6	42
43	Investigation on Data Fusion of Multisource Spectral Data for Rice Leaf Diseases Identification Using Machine Learning Methods. Frontiers in Plant Science, 2020, 11, 577063.	1.7	41
44	Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods. Chemometrics and Intelligent Laboratory Systems, 2020, 203, 104063.	1.8	41
45	Infrared spectroscopy and chemometrics for the starch and protein prediction in irradiated rice. Food Chemistry, 2011, 126, 1856-1861.	4.2	40
46	Shape induced reflectance correction for non-destructive determination and visualization of soluble solids content in winter jujubes using hyperspectral imaging in two different spectral ranges. Postharvest Biology and Technology, 2020, 161, 111080.	2.9	39
47	Application of visible/near infrared spectroscopy and chemometric calibrations for variety discrimination of instant milk teas. Journal of Food Engineering, 2009, 93, 127-133.	2.7	38
48	Deep Learning Associated with Laser-Induced Breakdown Spectroscopy (LIBS) for the Prediction of Lead in Soil. Applied Spectroscopy, 2019, 73, 565-573.	1.2	38
49	pH-Signaling Transcription Factor AopacC Regulates Ochratoxin A Biosynthesis in <i>Aspergillus ochraceus</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 4394-4401.	2.4	35
50	Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics. Sensors, 2018, 18, 95.	2.1	35
51	Detection of chlorpyrifos and carbendazim residues in the cabbage using visible/near-infrared spectroscopy combined with chemometrics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 257, 119759.	2.0	34
52	Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy: A case study in eastern China. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 149, 300-312.	1.5	32
53	Recent progress of nondestructive techniques for fruits damage inspection: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 5476-5494.	5.4	30
54	Rapid Determination of Cadmium Contamination in Lettuce Using Laser-Induced Breakdown Spectroscopy. Molecules, 2018, 23, 2930.	1.7	28

#	Article	IF	Citations
55	Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods. Environmental Pollution, 2019, 252, 1125-1132.	3.7	28
56	Use of Visible and Near Infrared Spectroscopy and Least Squares-Support Vector Machine To Determine Soluble Solids Content and pH of Cola Beverage. Journal of Agricultural and Food Chemistry, 2007, 55, 8883-8888.	2.4	27
57	Comparative Study of the Detection of Chromium Content in Rice Leaves by 532 nm and 1064 nm Laser-Induced Breakdown Spectroscopy. Sensors, 2018, 18, 621.	2.1	26
58	High-Sensitivity Determination of Nutrient Elements in Panax notoginseng by Laser-induced Breakdown Spectroscopy and Chemometric Methods. Molecules, 2019, 24, 1525.	1.7	26
59	Rapid Identification of Genetically Modified Maize Using Laser-Induced Breakdown Spectroscopy. Food and Bioprocess Technology, 2019, 12, 347-357.	2.6	26
60	Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves. Plant Methods, 2017, 13, 39.	1.9	25
61	Detection of Sclerotinia Stem Rot on Oilseed Rape (Brassica napus L.) Leaves Using Hyperspectral Imaging. Sensors, 2018, 18, 1764.	2.1	25
62	High-accuracy and fast determination of chromium content in rice leaves based on collinear dual-pulse laser-induced breakdown spectroscopy and chemometric methods. Food Chemistry, 2019, 295, 327-333.	4.2	24
63	Detection of Aspartic Acid in Fermented Cordyceps Powder Using Near Infrared Spectroscopy Based on Variable Selection Algorithms and Multivariate Calibration Methods. Food and Bioprocess Technology, 2014, 7, 598-604.	2.6	23
64	Fast detection of peroxidase (POD) activity in tomato leaves which infected with Botrytis cinerea using hyperspectral imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 498-502.	2.0	22
65	Quantitative Determination of Cd in Soil Using Laser-Induced Breakdown Spectroscopy in Air and Ar Conditions. Molecules, 2018, 23, 2492.	1.7	22
66	Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods. Foods, 2020, 9, 341.	1.9	22
67	Discrimination of Grape Seeds Using Laser-Induced Breakdown Spectroscopy in Combination with Region Selection and Supervised Classification Methods. Foods, 2020, 9, 199.	1.9	22
68	Fast Classification of Geographical Origins of Honey Based on Laser-Induced Breakdown Spectroscopy and Multivariate Analysis. Sensors, 2020, 20, 1878.	2.1	22
69	Nondestructive determination of nutritional information in oilseed rape leaves using visible/near infrared spectroscopy and multivariate calibrations. Science China Information Sciences, 2011, 54, 598-608.	2.7	21
70	A Multi-Source Data Fusion Decision-Making Method for Disease and Pest Detection of Grape Foliage Based on ShuffleNet V2. Remote Sensing, 2021, 13, 5102.	1.8	20
71	Fast Detection of Sclerotinia Sclerotiorum on Oilseed Rape Leaves Using Low-Altitude Remote Sensing Technology. Sensors, 2018, 18, 4464.	2.1	19
72	Rapid Identification of Kudzu Powder of Different Origins Using Laser-Induced Breakdown Spectroscopy. Sensors, 2019, 19, 1453.	2.1	19

#	Article	IF	CITATIONS
73	Determination and Visualization of pH Values in Anaerobic Digestion of Water Hyacinth and Rice Straw Mixtures Using Hyperspectral Imaging with Wavelet Transform Denoising and Variable Selection. Sensors, 2016, 16, 244.	2.1	18
74	Quantitative Analysis of Cadmium in Tobacco Roots Using Laser-Induced Breakdown Spectroscopy With Variable Index and Chemometrics. Frontiers in Plant Science, 2018, 9, 1316.	1.7	18
75	Determination of Protein Content of <i>Auricularia auricula</i> Using Near Infrared Spectroscopy Combined with Linear and Nonlinear Calibrations. Journal of Agricultural and Food Chemistry, 2009, 57, 4520-4527.	2.4	17
76	Fast Analysis of Superoxide Dismutase (SOD) Activity in Barley Leaves Using Visible and Near Infrared Spectroscopy. Sensors, 2012, 12, 10871-10880.	2.1	17
77	Application of Laser-Induced Breakdown Spectroscopy in Detection of Cadmium Content in Rice Stems. Frontiers in Plant Science, 2020, 11, 599616.	1.7	17
78	Quantitative analysis of cadmium in rice roots based on LIBS and chemometrics methods. Environmental Sciences Europe, 2021, 33, .	2.6	17
79	Rapid and Accurate Varieties Classification of Different Crop Seeds Under Sample-Limited Condition Based on Hyperspectral Imaging and Deep Transfer Learning. Frontiers in Bioengineering and Biotechnology, 2021, 9, 696292.	2.0	17
80	Discrimination of Producing Areas of Auricularia auricula Using Visible/Near Infrared Spectroscopy. Food and Bioprocess Technology, 2011, 4, 387-394.	2.6	15
81	Beta-casomorphin-7 prevents epithelial-mesenchymal transdifferentiation of NRK-52E cells at high glucose level: Involvement of Angll-TGF-Î ² 1 pathway. Peptides, 2015, 70, 37-44.	1.2	15
82	Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging. Applied Sciences (Switzerland), 2016, 6, 450.	1.3	15
83	Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques. Foods, 2021, 10, 2767.	1.9	15
84	Potential of Vis-NIR to measure heavy metals in different varieties of organic-fertilizers using Boruta and deep belief network. Ecotoxicology and Environmental Safety, 2021, 228, 112996.	2.9	14
85	Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics. Journal of Dairy Science, 2013, 96, 4921-4927.	1.4	13
86	Application of Machine Learning Method to Quantitatively Evaluate the Droplet Size and Deposition Distribution of the UAV Spray Nozzle. Applied Sciences (Switzerland), 2020, 10, 1759.	1.3	13
87	Mid-Infrared Spectroscopy for Coffee Variety Identification: Comparison of Pattern Recognition Methods. Journal of Spectroscopy, 2016, 2016, 1-7.	0.6	12
88	Variety Identification of Rice Vinegars Using Visible and Near Infrared Spectroscopy and Multivariate Calibrations. International Journal of Food Properties, 2011, 14, 1264-1276.	1.3	11
89	Quantitative Analysis of Total Amino Acid in Barley Leaves under Herbicide Stress Using Spectroscopic Technology and Chemometrics. Sensors, 2012, 12, 13393-13401.	2.1	11
90	Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology. Drones, 2022, 6, 151.	2.7	11

#	Article	IF	CITATIONS
91	Development of a Near Ground Remote Sensing System. Sensors, 2016, 16, 648.	2.1	10
92	Rapid Identification of Varieties of Walnut Powder Based on Laser-Induced Breakdown Spectroscopy. Transactions of the ASABE, 2017, 60, 19-28.	1.1	10
93	Signal Enhancement of Cadmium in Lettuce Using Laser-Induced Breakdown Spectroscopy Combined with Pyrolysis Process. Molecules, 2019, 24, 2517.	1.7	10
94	Detection of <i>Sclerotinia</i> Stem Rot on Oilseed Rape (<i>Brassica napus</i> L.) Based on Laser-Induced Breakdown Spectroscopy. Transactions of the ASABE, 2019, 62, 123-130.	1.1	9
95	High-Throughput Screening of Free Proline Content in Rice Leaf under Cadmium Stress Using Hyperspectral Imaging with Chemometrics. Sensors, 2020, 20, 3229.	2.1	9
96	A Non-Destructive Distinctive Method for Discrimination of Automobile Lubricant Variety by Visible and Short-Wave Infrared Spectroscopy. Sensors, 2012, 12, 3498-3511.	2.1	8
97	Roughness measurement of leaf surface based on shape from focus. Plant Methods, 2021, 17, 72.	1.9	8
98	Particle Swarm Optimization and Multiple Stacked Generalizations to Detect Nitrogen and Organic-Matter in Organic-Fertilizer Using Vis-NIR. Sensors, 2021, 21, 4882.	2.1	8
99	Research on WSN Channel Fading Model and Experimental Analysis in Orchard Environment. International Federation for Information Processing, 2012, , 326-333.	0.4	8
100	Feasibility Study on a Portable Field Pest Classification System Design Based on DSP and 3G Wireless Communication Technology. Sensors, 2012, 12, 3118-3130.	2.1	7
101	Multilevel LASSO-based NIR temperature-correction modeling for viscosity measurement of bisphenol-A. ISA Transactions, 2020, 107, 206-213.	3.1	7
102	Detection of Glutamic Acid in Oilseed Rape Leaves Using Near Infrared Spectroscopy and the Least Squares-Support Vector Machine. International Journal of Molecular Sciences, 2012, 13, 14106-14114.	1.8	6
103	Measurement of aspartic acid in oilseed rape leaves under herbicide stress using near infrared spectroscopy and chemometrics. Heliyon, 2016, 2, e00064.	1.4	6
104	Application of Visible/Near Infrared Spectrometers to Quickly Detect the Nitrogen, Phosphorus, and Potassium Content of Chemical Fertilizers. Applied Sciences (Switzerland), 2021, 11, 5103.	1.3	6
105	Application of Laser-Induced Breakdown Spectroscopy and Chemometrics for the Quality Evaluation of Foods with Medicinal Properties: A Review. Foods, 2022, 11, 2051.	1.9	6
106	Application of Least Squares-Support Vector Machine for Measurement of Soluble Solids Content of Rice Vinegars Using Vis/NIR Spectroscopy. , 2007, , .		5
107	The influence of new herbicide ZJ0273 on the total- and branched-chain amino acids in oilseed rape (Brassica napus L.) leaves as revealed by near-infrared spectroscopy. Acta Physiologiae Plantarum, 2014, 36, 2149-2156.	1.0	5
108	mRMR-based wavelength selection for quantitative detection of Chinese yellow wine using NIRS. Analytical Methods, 2018, 10, 667-675.	1.3	5

#	Article	IF	CITATIONS
109	Fast Determination of Copper Content in Tobacco (<i>Nicotina tabacum</i> L.) Leaves Using Laser-Induced Breakdown Spectroscopy with Univariate and Multivariate Analysis. Transactions of the ASABE, 2018, 61, 821-829.	1.1	5
110	Research on Method of Farmland Obstacle Boundary Extraction in UAV Remote Sensing Images. Sensors, 2019, 19, 4431.	2.1	5
111	Quantitative analysis of cadmium and zinc in algae using laser-induced breakdown spectroscopy. Analytical Methods, 2019, 11, 6124-6135.	1.3	5
112	Comparative Study of Distance Discriminant Analysis and Bp Neural Network for Identification of Rapeseed Cultivars Using Visible/Near Infrared Spectra. International Federation for Information Processing, 2011, , 124-133.	0.4	5
113	Fast Identification of Soybean Seed Varieties Using Laser-Induced Breakdown Spectroscopy Combined With Convolutional Neural Network. Frontiers in Plant Science, 2021, 12, 714557.	1.7	5
114	Application of Fourier transform mid-infrared photoacoustic spectroscopy for rapid assessment of phosphorus availability in digestates and digestate-amended soils. Science of the Total Environment, 2022, 832, 155040.	3.9	4
115	Application of Laser-Induced Breakdown Spectroscopy Coupled With Spectral Matrix and Convolutional Neural Network for Identifying Geographical Origins of Gentiana rigescens Franch. Frontiers in Artificial Intelligence, 2021, 4, 735533.	2.0	4
116	Comparison and Determination of Acetic Acid of Plum Vinegar Using Visible/Near Infrared Spectroscopy and Multivariate Calibration. , 2009, , .		3
117	Nondestructive Estimation of Nitrogen Status and Vegetation Index of Oilseed Rape Canopy Using Multi-Spectral Imaging Technology. Sensor Letters, 2011, 9, 1126-1132.	0.4	2
118	Discrimination of Varieties of Yellow Wines by Using Vis/NIR Spectroscopy and PLS-BP Model., 2007,,.		1
119	Application of least squares support vector machines for discrimination of red wine using visible and near infrared spectroscopy. , 2008, , .		1
120	Prediction of pH of cola beverage using Vis/NIR spectroscopy and least squares-support vector machine. Proceedings of SPIE, 2008, , .	0.8	1
121	Determination of acetic acid of fruit vinegars using near infrared spectroscopy and least squares-support vector machine. , 2008, , .		1
122	Estimating Nitrogen Status of Plant by Vis/NIR Spectroscopy and Mathematical Model., 2009,,.		1
123	Determination of Protein Content of Auricularia Auricula Using Spectroscopy and Least Squares-Support Vector Machine. , 2009, , .		1
124	Nondestructive Determination of Citric Acid Using Successive Projections Algorithm and Spectroscopic Techniques. Key Engineering Materials, 2011, 460-461, 9-14.	0.4	1
125	Determination of Pigments Concentration of Oilseed Rape (Brassica napus L.) Leaves Using Hyperspectral Imaging. Applied Engineering in Agriculture, 2015, , 23-30.	0.3	1
126	Pharmacokinetics and acetylation of sulfamethoxazole in turbot Scophthalmus maximus after intravascular administration. Chinese Journal of Oceanology and Limnology, 2016, 34, 789-794.	0.7	1

#	Article	IF	Citations
127	Crop Information Sensing Technology. Agriculture Automation and Control, 2021, , 121-153.	0.3	1
128	DETECTION OF SPAD VALUE OF CUCUMBER LEAVES BASED ON VISIBLE/NEAR INFRARED SPECTROSCOPY TECHNIQUE. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2009, 28, 272-276.	0.2	1
129	Nutrition Management and Automation. , 2013, , 231-262.		1
130	Pattern Recognition of Vis/NIR Spectroscopy from White Vinegar Based on PLS and BP-ANN Model. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2007, , .	0.0	0
131	Measurement of pH of rice wines using Vis/NIR spectroscopy and least squares-support vector machine. , 2007, , .		0
132	Rapid detection of soluble solid content in beer using spectroscopic technique based on LS-SVM algorithm model. Proceedings of SPIE, 2007, , .	0.8	0
133	Combination and Comparison of Chemometric Methods for Determination of pH of Rice Vinegars Using Visible and Near Infrared Spectroscopy. , 2008, , .		0
134	Discrimination of Rice Wine Age Using Visible and Near Infrared Spectroscopy Combined with BP Neural Network. , 2008, , .		0
135	Determination of Tartaric Acid of Fruit Vinegars Using Near Infrared Spectroscopy and Chemometrics. , 2008, , .		0
136	Measurement of sugar content of white vinegars using VIS/near-infrared spectroscopy and back propagation neural networks. , 2008, , .		0
137	Nondestructive prediction of acetolactate synthase of oilseed rape leaves using visible/near-infrared spectroscopy and BP neural networks. , 2008, , .		0
138	Detection of Protein Content of Oilseed Rape Leaves Using Visible/Near-Infrared Spectroscopy and Multivariate Calibrations. , 2008, , .		0
139	Determination of polysaccharides of Auricularia auricula using visible/near-infrared spectroscopy and chemometrics. Proceedings of SPIE, 2008, , .	0.8	0
140	Determination of citric acid of lemon vinegar using visible/near infrared spectroscopy and least squares-support vector machine. , 2008, , .		0
141	Study on an Advanced Treatment of Domestic Wastewater by Bio-filtration and Water-Quality Measurement System., 2009,,.		0
142	Determination of Total Amino Acids in Oilseed Rape Leaves Using Near Infrared Spectroscopy and Chemometrics. , 2009, , .		0
143	Argumentation of some issues of early rice remote sensing monitoring in Hubei province. , 2011, , .		0
144	Hyperspectral imaging technology combined with genome-wide association study rapidly identifies more genes related to rice quality. , 2018 , , .		0

#	Article	IF	CITATIONS
145	Dual Stream Segmentation Network for Real-Time Semantic Segmentation. , 2020, , .		O
146	Determination of Sugar Content of Instant Milk-Tea Using Effective Wavelengths and Least Squares-Support Vector Machine. Lecture Notes in Electrical Engineering, 2010, , 893-900.	0.3	0