
German Andres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7307605/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Plasmolipin regulates basolateral-to-apical transcytosis of ICAM-1 and leukocyte adhesion in polarized hepatic epithelial cells. Cellular and Molecular Life Sciences, 2022, 79, 61.	5.4	2
2	The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. Journal of Biological Chemistry, 2020, 295, 1-12.	3.4	76
3	African Swine Fever Virus Protein pE199L Mediates Virus Entry by Enabling Membrane Fusion and Core Penetration. MBio, 2020, 11, .	4.1	38
4	Polarized sorting of Patched enables cytonemeâ€mediated Hedgehog reception in the <i>Drosophila</i> wing disc. EMBO Journal, 2020, 39, e103629.	7.8	28
5	Antiangiogenic Vascular Endothelial Growth Factor-Blocking Peptides Displayed on the Capsid of an Infectious Oncolytic Parvovirus: Assembly and Immune Interactions. Journal of Virology, 2019, 93, .	3.4	3
6	A Proteomic Atlas of the African Swine Fever Virus Particle. Journal of Virology, 2018, 92, .	3.4	243
7	African Swine Fever Virus Gets Undressed: New Insights on the Entry Pathway. Journal of Virology, 2017, 91, .	3.4	31
8	Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation. Oncotarget, 2016, 7, 16070-16089.	1.8	67
9	Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. Journal of Cell Biology, 2016, 214, 259-273.	5.2	74
10	African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathogens, 2016, 12, e1005595.	4.7	98
11	African swine fever virus assembles a single membrane derived from rupture of the endoplasmic reticulum. Cellular Microbiology, 2015, 17, 1683-1698.	2.1	38
12	Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubularÂorgans. Nature Cell Biology, 2015, 17, 241-250.	10.3	60
13	The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. Journal of Cell Science, 2015, 128, 2261-2270.	2.0	19
14	Cutting Edge: Regulation of Exosome Secretion by the Integral MAL Protein in T Cells. Journal of Immunology, 2015, 195, 810-814.	0.8	45
15	Establishment of a Zebrafish Infection Model for the Study of Wild-Type and Recombinant European Sheatfish Virus. Journal of Virology, 2015, 89, 10702-10706.	3.4	12
16	Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nature Communications, 2014, 5, 5649.	12.8	169
17	Cyclic Adenosine Monophosphate-Response Element–Binding Protein Mediates the Proangiogenic or Proinflammatory Activity of Gremlin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 136-145.	2.4	45
18	African swine fever virus morphogenesis. Virus Research, 2013, 173, 29-41.	2.2	137

GERMAN ANDRES

#	Article	IF	CITATIONS
19	Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nature Cell Biology, 2013, 15, 1269-1281.	10.3	217
20	Engineering a Replication-Competent, Propagation-Defective Middle East Respiratory Syndrome Coronavirus as a Vaccine Candidate. MBio, 2013, 4, e00650-13.	4.1	236
21	African Swine Fever Virus Polyprotein Processing Proteinase. , 2013, , 2385-2390.		0
22	Three-dimensional visualization of forming Hepatitis C virus-like particles by electron-tomography. Virology, 2012, 430, 120-126.	2.4	7
23	Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the <i>Drosophila</i> wing disk epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12591-12598.	7.1	150
24	African Swine Fever Virus Protein p17 Is Essential for the Progression of Viral Membrane Precursors toward Icosahedral Intermediates. Journal of Virology, 2010, 84, 7484-7499.	3.4	50
25	A proâ€inflammatory signature mediates FGF2â€induced angiogenesis. Journal of Cellular and Molecular Medicine, 2009, 13, 2083-2108.	3.6	66
26	Inflammatory cells andÂchemokines sustain FGF2-induced angiogenesis. European Cytokine Network, 2009, 20, 39-50.	2.0	114
27	Angiopoietin-1 mediates the proangiogenic activity of the bone morphogenic protein antagonist Drm. Blood, 2008, 112, 1154-1157.	1.4	37
28	Antiangiogenic Activity of Semisynthetic Biotechnological Heparins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 71-76.	2.4	35
29	African Swine Fever Virus Structural Protein p54 Is Essential for the Recruitment of Envelope Precursors to Assembly Sites. Journal of Virology, 2004, 78, 4299-4313.	3.4	89
30	African Swine Fever Virus Proteinase Is Essential for Core Maturation and Infectivity. Journal of Virology, 2003, 77, 5571-5577.	3.4	43
31	African Swine Fever Virus Polyproteins pp220 and pp62 Assemble into the Core Shell. Journal of Virology, 2002, 76, 12473-12482.	3.4	74
32	Repression of African Swine Fever Virus Polyprotein pp220-Encoding Gene Leads to the Assembly of Icosahedral Core-Less Particles. Journal of Virology, 2002, 76, 2654-2666.	3.4	69
33	African Swine Fever Virus Protease, a New Viral Member of the SUMO-1-specific Protease Family. Journal of Biological Chemistry, 2001, 276, 780-787.	3.4	98
34	African Swine Fever Virus Structural Protein pE120R Is Essential for Virus Transport from Assembly Sites to Plasma Membrane but Not for Infectivity. Journal of Virology, 2001, 75, 6758-6768.	3.4	72
35	The African Swine Fever Virus Prenyltransferase Is an Integral Membrane trans-Geranylgeranyl-diphosphate Synthase. Journal of Biological Chemistry, 1999, 274, 18033-18039.	3.4	17
36	African Swine Fever Virus Is Enveloped by a Two-Membraned Collapsed Cisterna Derived from the Endoplasmic Reticulum. Journal of Virology, 1998, 72, 8988-9001.	3.4	100

#	Article	IF	CITATIONS
37	Inducible Gene Expression from African Swine Fever Virus Recombinants: Analysis of the Major Capsid Protein p72. Journal of Virology, 1998, 72, 3185-3195.	3.4	74
38	Mapping and Sequence of the Gene Encoding Protein pl7, a Major African Swine Fever Virus Structural Protein. Virology, 1995, 206, 1140-1144.	2.4	25
39	A structural model for the GroEL chaperonin. FEMS Microbiology Letters, 1993, 106, 301-308.	1.8	7
40	Characterization of Two African Swine Fever Virus 220-kDa Proteins: A Precursor of the Major Structural Protein p150 and an Oligomer of Phosphoprotein p32. Virology, 1993, 194, 284-293.	2.4	13