Lihua Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7306609/publications.pdf

Version: 2024-02-01

86 papers	783	623734 14 h-index	610901 24 g-index
86 all docs	86 docs citations	86 times ranked	582 citing authors

#	Article	IF	CITATIONS
1	Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target. Physics of Plasmas, 2010, 17, .	1.9	48
2	Acceleration and guiding of fast electrons by a nanobrush target. Physics of Plasmas, 2010, 17, .	1.9	46
3	Enhancement of backward Raman scattering by electron-ion collisions. Physics of Plasmas, 2009, 16, 112703.	1.9	43
4	Electron acceleration by an intense short-pulse laser in underdense plasma. Physics of Plasmas, 2003, 10, 2468-2474.	1.9	41
5	Control of the hot electrons produced by laser interaction with nanolayered target. Physics of Plasmas, 2010, 17, .	1.9	41
6	Nonlinear laser focusing using a conical guide and generation of energetic ions. Physical Review E, 2008, 78, 036405.	2.1	35
7	Electron Emission at Locked Phases from the Laser-Driven Surface Plasma Wave. Physical Review Letters, 2012, 109, 115002.	7.8	33
8	Enhanced energy coupling for indirect-drive fast-ignition fusion targets. Nature Physics, 2020, 16, 810-814.	16.7	33
9	Study of ultraintense laser propagation in overdense plasmas for fast ignition. Physics of Plasmas, 2009, 16, 056307.	1.9	25
10	Enhancement in coupling efficiency from laser to forward hot electrons by conical nanolayered targets. Applied Physics Letters, 2012, 100, .	3.3	20
11	Self-Organized Kilotesla Magnetic-Tube Array in an Expanding Spherical Plasma Irradiated by kHz Femtosecond Laser Pulses. Physical Review Letters, 2018, 121, 255002.	7.8	20
12	Decreasing Brillouin and Raman scattering by alternating-polarization light. Physics of Plasmas, 2017, 24, .	1.9	18
13	Stimulated Brillouin scattering of backward stimulated Raman scattering. Scientific Reports, 2020, 10, 3492.	3.3	16
14	Influence of the target front-surface curvature on proton acceleration in laser-foil interaction. Physics of Plasmas, 2009, 16, .	1.9	15
15	Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region. Physical Review E, 2016, 94, 023205.	2.1	15
16	Guiding and confining fast electrons by transient electric and magnetic fields with a plasma inverse cone. Physics of Plasmas, 2009, 16, .	1.9	12
17	Generation of monoenergetic proton beams by a combined scheme with an overdense hydrocarbon target and an underdense plasma gas irradiated by ultra-intense laser pulse. Laser and Particle Beams, 2014, 32, 583-589.	1.0	11
18	The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas. Plasma Physics and Controlled Fusion, 2017, 59, 065004.	2.1	11

#	Article	IF	Citations
19	Enhancing the electron acceleration by a circularly polarized laser interaction with a cone-target with an external longitudinal magnetic field. Physics of Plasmas, 2017, 24, 033103.	1.9	11
20	Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave. Matter and Radiation at Extremes, $2021, 6, .$	3.9	11
21	Efficient laser absorption and enhanced electron yield in the laser-target interaction by using a cone-nanolayer target. Physics of Plasmas, 2011, 18, .	1.9	10
22	Study of strong enhancement of synchrotron radiation via surface plasma waves excitation by particle-in-cell simulations. Applied Physics Letters, 2015, 107, .	3.3	10
23	Physical studies of fast ignition in China. Plasma Physics and Controlled Fusion, 2015, 57, 064003.	2.1	10
24	Faraday effect on stimulated Raman scattering in the linear region. Plasma Physics and Controlled Fusion, 2018, 60, 045008.	2.1	10
25	Stimulated Brillouin scattering behaviors in multi-ion species plasmas in high-temperature and high-density region. Physics of Plasmas, 2019, 26, .	1.9	10
26	Anti-Langmuir decay instability in Langmuir decay instability cascade. Physics of Plasmas, 2018, 25, 092112.	1.9	9
27	Particle simulation and electron heating effects in plasmas produced by laser pulse. Physics of Plasmas, 1998, 5, 499-502.	1.9	8
28	Terahertz radiation from oscillating electrons in laser-induced wake fields. Physical Review E, 2004, 70, 046408.	2.1	8
29	Reshaping of intense laser pulse with a capillary. Physics of Plasmas, 2009, 16, 093109.	1.9	8
30	Focusing of intense laser pulse by a hollow cone. Laser and Particle Beams, 2010, 28, 293-298.	1.0	8
31	Improvement of proton energy in high-intensity laser-nanobrush target interactions. Laser and Particle Beams, 2012, 30, 307-311.	1.0	8
32	Controlling stimulated Raman scattering by two-color light in inertial confinement fusion. Physics of Plasmas, 2017, 24, .	1.9	8
33	Excitation of coherent terahertz radiation by stimulated Raman scatterings. Physics of Plasmas, 2010, 17, 024502.	1.9	7
34	Guiding and collimating fast electron beam by the quasi-static electromagnetic field array. Physics of Plasmas, 2014, 21, .	1.9	7
35	Transport of fast electrons in a nanowire array with collisional effects included. Physics of Plasmas, 2015, 22, .	1.9	7
36	A spherical shell target scheme for laser-driven neutron sources. Physics of Plasmas, 2015, 22, .	1.9	6

#	Article	IF	CITATIONS
37	Investigation on laser plasma instability of the outer ring beams on SGIII laser facility. AIP Advances, 2019, 9, .	1.3	6
38	Auto-resonant stimulated Brillouin backscattering in supersonic flowing plasmas by fully kinetic Vlasov simulations. Plasma Physics and Controlled Fusion, 2019, 61, 085017.	2.1	6
39	Improvement of ion acceleration in radiation pressure acceleration regime by using an external strong magnetic field. Laser and Particle Beams, 2019, 37, 217-222.	1.0	6
40	Influences of sinusoidal density modulation on stimulated Raman scattering in inhomogeneous plasmas. Plasma Physics and Controlled Fusion, 2021, 63, 055004.	2.1	6
41	Improvement of laser absorption and control of particle acceleration by subwavelength nanowire target. Physics of Plasmas, 2020, 27, .	1.9	6
42	Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser†plasma interaction. Plasma Physics and Controlled Fusion, 2017, 59, 075007.	2.1	6
43	Fast electron beam with manageable spotsize from laser interaction with the tailored cone-nanolayer target. Laser and Particle Beams, 2012, 30, 553-558.	1.0	5
44	Direct generation of relativistic isolated attosecond pulses in transmission from laser-driven plasmas. Optics Letters, 2021, 46, 1285.	3.3	5
45	Enhanced parametric pulse amplification in a comparable-mass plasma affected by charge state. Plasma Physics and Controlled Fusion, 2020, 62, 105020.	2.1	5
46	Saturation of trapped particle instability induced by vortex-merging in electron plasma waves. Plasma Physics and Controlled Fusion, 2020, 62, 095009.	2.1	5
47	Multi-dimensional Vlasov simulations on trapping-induced sidebands of Langmuir waves. Physics of Plasmas, 2021, 28, .	1.9	5
48	Suprathermal electrons from the anti-Stokes Langmuir decay instability cascade. Physical Review E, 2022, 105, 045208.	2.1	5
49	Self-organization of plasma due to electron beam instability. Physics of Plasmas, 2006, 13, 053103.	1.9	4
50	Relative importance of mega electronvolt-electron energy deposition by collisions and field effects in fast ignition. Physics of Plasmas, 2012, 19, .	1.9	4
51	The light diffraction effect on stimulated Raman scattering. Physics of Plasmas, 2016, 23, 022705.	1.9	4
52	Enhancement of proton acceleration by a right-handed circularly polarized laser interaction with a cone target exposed to a longitudinal magnetic field. Physics of Plasmas, 2017, 24, .	1.9	4
53	Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas. Plasma Physics and Controlled Fusion, 2017, 59, 085007.	2.1	4
54	Growth rate and gain of stimulated Brillouin scattering considering nonlinear Landau damping due to particle trapping. Plasma Physics and Controlled Fusion, 2020, 62, 045013.	2.1	4

#	Article	IF	CITATIONS
55	Investigation of Langdon effect on the stimulated backward Raman and Brillouin scattering. Plasma Physics and Controlled Fusion, 2021, 63, 125021.	2.1	4
56	Enhanced Proton Acceleration from Laser Interaction with a Tailored Nanowire Target. Applied Sciences (Switzerland), 2022, 12, 1153.	2.5	4
57	Hot electron transport and heating in dense plasma core by hollow guiding. Laser and Particle Beams, 2010, 28, 563-570.	1.0	3
58	Multiple acoustic modes stimulated Brillouin scattering in hydrogen plasmas. Plasma Physics and Controlled Fusion, 2012, 54, 095004.	2.1	3
59	Monte Carlo simulations of $\hat{\text{Kl}}\pm$ source generated by hot electrons-nanobrush target interactions. Physics of Plasmas, 2016, 23, 093102.	1.9	3
60	Improvement of proton acceleration via collisionless shock acceleration by laser-foil interaction with an external magnetic field. Physics of Plasmas, 2019, 26, .	1.9	3
61	Reducing reflectivity of stimulated Raman scattering by discretely changing phase of incident light in inertial fusion plasmas. Physica Scripta, 2021, 96, 125634.	2.5	3
62	Weibel instability induced by kinetic stimulated Raman scattering in unmagnetized and magnetized plasmas. Plasma Physics and Controlled Fusion, 2022, 64, 045009.	2.1	3
63	Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction. Physics of Plasmas, 2015, 22, 013106.	1.9	2
64	Enhanced betatron radiation in strongly magnetized plasma. Physics of Plasmas, 2016, 23, 043115.	1.9	2
65	Enhanced focusing of relativistic lasers by plasma lens with exponentially increasing density profiles. Physics of Plasmas, 2017, 24, .	1.9	2
66	$\mbox{K}\hat{l}\pm\mbox{<}/\mbox{i>}$ emission by the electrons with bi-Maxwellian distribution in a Cu foil. Physics of Plasmas, 2018, 25, .	1.9	2
67	Enhanced Proton Acceleration by Laser-Driven Collisionless Shock in the Near-Critical Density Target Embedding with Solid Nanolayers. Laser and Particle Beams, 2021, 2021, .	1.0	2
68	Terahertz Radiation from a Plasma Cylinder with External Radial Electric and Axial Magnetic Fields. Laser and Particle Beams, 2021, 2021, .	1.0	2
69	Manipulation and optimization of electron transport by nanopore array targets. Plasma Science and Technology, 2021, 23, 015001.	1.5	2
70	Collective stimulated Brillouin scattering with shared ion acoustic wave under the action of two overlapping laser beams. Plasma Physics and Controlled Fusion, 2021, 63, 125026.	2.1	2
71	Enhancement of Magnetic Vortex Acceleration by Laser Interaction with Near-Critical Density Plasma inside a Hollow Conical Target. Laser and Particle Beams, 2022, 2022, .	1.0	2
72	Comparison of the analytical and simulation results of the equilibrium beam profile. Physics of Plasmas, 2007, 14 , .	1.9	1

#	Article	IF	Citations
73	Study on the effects of ion motion on laser-induced plasma wakes. Physics of Plasmas, 2012, 19, 093101.	1.9	1
74	Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma. Plasma Science and Technology, 2014, 16, 1007-1012.	1.5	1
75	Combined action of corrugation and Weibel instabilities from electron-beam interaction with laser-irradiated plasma. Physics of Plasmas, 2018, 25, 033112.	1.9	1
76	Generation of collimated electron jets from plasma under applied electromagnetostatic field. Laser and Particle Beams, 2018, 36, 384-390.	1.0	1
77	Investigation on the transport efficiency of fast electrons with double-layer Kα fluorescence measurement. Physics of Plasmas, 2019, 26, 073101.	1.9	1
78	Enhanced proton acceleration via the leaky light-sail regime by laser interaction with nanofoils in strongly magnetized plasmas. Physics of Plasmas, 2020, 27, 063107.	1.9	1
79	Eigenvalue solution for the ion-collisional effects on the fast and slow ion acoustic waves in multi-ion species plasmas. Plasma Physics and Controlled Fusion, 2021, 63, 045014.	2.1	1
80	The effects of plasma density-gradient on laser-driven transmitted emission. Plasma Physics and Controlled Fusion, 2020, 62, 115003.	2.1	1
81	Stimulated Brillouin scattering enhanced by the stimulated Raman process near the quarter-critical density. Plasma Physics and Controlled Fusion, 2022, 64, 035002.	2.1	1
82	Collimated proton beams by ultra-short, ultra-intense laser pulse interaction with a foil–ramparts target. Laser and Particle Beams, 2015, 33, 765-771.	1.0	0
83	Stably propagating trains of attosecond electron bunches generated along the target back. Physics of Plasmas, 2016, 23, 093101.	1.9	0
84	Trapping laser pulse between two foils and periodic generation of energetic electron beam. Physics of Plasmas, 2019, 26, 014502.	1.9	0
85	Enhancement of brightness of high-order harmonics with elliptical polarization from near-critical density plasmas irradiated by an ultraintense laser pulse. Physics of Plasmas, 2020, 27, 083101.	1.9	0
86	Polarization conversion in the caviton driven by linearly polarized lasers. Physical Review E, 2022, 105, L023202.	2.1	0