
Pengfei Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7305863/publications.pdf Version: 2024-02-01

DENCEEL TIAN

#	Article	IF	CITATIONS
1	Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO2 nanorod in CO oxidation. Journal of Hazardous Materials, 2022, 426, 127793.	12.4	26
2	Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nature Catalysis, 2022, 5, 99-108.	34.4	155
3	Redirecting dynamic structural evolution of nickel-contained RuO2 catalyst during electrochemical oxygen evolution reaction. Journal of Energy Chemistry, 2022, 69, 330-337.	12.9	24
4	Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation. Applied Catalysis B: Environmental, 2021, 282, 119561.	20.2	100
5	Tracking structural evolution: <i>operando</i> regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. National Science Review, 2021, 8, nwaa187.	9.5	50
6	Curvature-induced electronic tuning of molecular catalysts for CO ₂ reduction. Catalysis Science and Technology, 2021, 11, 2491-2496.	4.1	11
7	Revealing the Effect of Sodium on Iron-Based Catalysts for CO ₂ Hydrogenation: Insights from Calculation and Experiment. Journal of Physical Chemistry C, 2021, 125, 7637-7646.	3.1	20
8	Ce-introduced effects on modification of acidity and Pt electronic states on Pt-Sn/γ-Al2O3 catalysts for catalytic reforming. Applied Catalysis A: General, 2021, 617, 118116.	4.3	17
9	Tunable Carbon Dioxide Activation Pathway over Iron Oxide Catalysts: Effects of Potassium. Industrial & Engineering Chemistry Research, 2021, 60, 8705-8713.	3.7	18
10	Borophene Nanoribbons via Strain Engineering for the Hydrogen Evolution Reaction: A First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 16955-16962.	3.1	12
11	Deflagration method synthesizing N, S co-doped oxygen-functionalized carbons as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. Carbon, 2021, 181, 234-245.	10.3	32
12	Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction. Applied Catalysis B: Environmental, 2021, 298, 120581.	20.2	54
13	Synergistic Effect of Platinum Single Atoms and Nanoclusters Boosting Electrocatalytic Hydrogen Evolution. CCS Chemistry, 2021, 3, 2539-2547.	7.8	36
14	Activation and deactivation of the commercialâ€ŧype CuO–Cr ₂ O ₃ –Fe ₂ O ₃ high temperature shift catalyst. AICHE Journal, 2020, 66, e16846.	3.6	14
15	Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation. Journal of CO2 Utilization, 2020, 38, 10-15.	6.8	41
16	In situ template reaction method to prepare three-dimensional interconnected Fe-N doped hierarchical porous carbon for efficient oxygen reduction reaction catalysts and high performance supercapacitors. Journal of Power Sources, 2020, 448, 227443.	7.8	21
17	Degradation of MO and H 2 O 2 on Cu/ γâ€Al 2 O 3 pellets in a fixed bed reactor: Kinetics and transport characteristics. AICHE Journal, 2020, 66, e17000.	3.6	9
18	Rh nanoclusters encaged in hollow mesoporous silica nanoreactors with enhanced catalytic performance for phenol selective hydrogenation. Chemical Engineering Journal, 2020, 397, 125484.	12.7	46

Pengfei Tian

#	Article	IF	CITATIONS
19	Nature of Reactive Oxygen Intermediates on Copper-Promoted Iron–Chromium Oxide Catalysts during CO ₂ Activation. ACS Catalysis, 2020, 10, 7857-7863.	11.2	44
20	Effects of Cerium Doping on Pt–Sn/Al ₂ O ₃ Catalysts for <i>n</i> -Heptane Reforming. Industrial & Engineering Chemistry Research, 2020, 59, 6424-6434.	3.7	20
21	Revealing the role of tellurium in palladium-tellurium catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis, 2020, 385, 21-29.	6.2	31
22	Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles. Applied Energy, 2020, 268, 115043.	10.1	28
23	Electroless deposition of Ni–Cu–P on a self-supporting graphene with enhanced hydrogen evolution reaction activity. International Journal of Hydrogen Energy, 2020, 45, 13985-13993.	7.1	20
24	Structure‶unable Copper–Indium Catalysts for Highly Selective CO ₂ Electroreduction to CO or HCOOH. ChemSusChem, 2019, 12, 3955-3959.	6.8	55
25	Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction. Applied Catalysis B: Environmental, 2019, 258, 117985.	20.2	107
26	"Frying―milk powder by molten salt to prepare nitrogen-doped hierarchical porous carbon for high performance supercapacitor. Journal of Alloys and Compounds, 2019, 806, 650-659.	5.5	24
27	A facile preparation of pomegranate-like porous carbon by carbonization and activation of phenolic resin prepared via hydrothermal synthesis in KOH solution for high performance supercapacitor electrodes. Advanced Powder Technology, 2019, 30, 2900-2907.	4.1	35
28	N-doped 3D porous carbon catalyst derived from biowaste Triarrhena sacchariflora panicle for oxygen reduction reaction. Carbon, 2019, 146, 70-77.	10.3	29
29	Strong Metal–Support Interactions between Copper and Iron Oxide during the Highâ€Temperature Waterâ€Gas Shift Reaction. Angewandte Chemie - International Edition, 2019, 58, 9083-9087.	13.8	82
30	Strong Metal–Support Interactions between Copper and Iron Oxide during the Highâ€Temperature Waterâ€Gas Shift Reaction. Angewandte Chemie, 2019, 131, 9181-9185.	2.0	22
31	Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts. Applied Catalysis B: Environmental, 2019, 244, 1-10.	20.2	214
32	Theoretical study of size effects on the direct synthesis of hydrogen peroxide over palladium catalysts. Journal of Catalysis, 2019, 369, 95-104.	6.2	46
33	Promotional effects of Sb on Pd-based catalysts for the direct synthesis of hydrogen peroxide at ambient pressure. Chinese Journal of Catalysis, 2018, 39, 673-681.	14.0	41
34	Tuning the Dynamic Interfacial Structure of Copper–Ceria Catalysts by Indium Oxide during CO Oxidation. ACS Catalysis, 2018, 8, 5261-5275.	11.2	100
35	Preparation of S/N co-doped graphene through a self-generated high gas pressure for high rate supercapacitor. Applied Surface Science, 2018, 456, 781-788.	6.1	49
36	Superhydrophobic Pt–Pd/Al 2 O 3 catalyst coating for hydrogen mitigation system of nuclear power plant. International Journal of Hydrogen Energy, 2017, 42, 14829-14840.	7.1	12

Pengfei Tian

#	Article	IF	CITATIONS
37	The origin of palladium particle size effects in the direct synthesis of H2O2: Is smaller better?. Journal of Catalysis, 2017, 349, 30-40.	6.2	98
38	Direct and Selective Synthesis of Hydrogen Peroxide over Palladium–Tellurium Catalysts at Ambient Pressure. ChemSusChem, 2017, 10, 3342-3346.	6.8	57
39	Catalytic decomposition of H2O2 over a Au/carbon catalyst: A dual intermediate model for the generation of hydroxyl radicals. Journal of Catalysis, 2016, 336, 126-132.	6.2	52
40	Temperature tuned carbon morphologies derived from flexible graphite sheets in KNO3 molten salt. Carbon, 2016, 98, 221-224.	10.3	18
41	Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnOx-CeO2 catalysts. Applied Catalysis B: Environmental, 2016, 191, 179-191.	20.2	126
42	Dispersing Pd nanoparticles on N-doped TiO ₂ : a highly selective catalyst for H ₂ O ₂ synthesis. Catalysis Science and Technology, 2016, 6, 5060-5068.	4.1	36
43	An efficient preparation of N-doped mesoporous carbon derived from milk powder for supercapacitors and fuel cells. Electrochimica Acta, 2016, 196, 527-534.	5.2	49
44	The generation of hydroxyl radicals by hydrogen peroxide decomposition on <scp>F</scp> eOCl/SBAâ€15 catalysts for phenol degradation. AICHE Journal, 2015, 61, 166-176.	3.6	75
45	First-Principles Study of C ₂ Oxygenates Synthesis Directly from Syngas over CoCu Bimetallic Catalysts. Journal of Physical Chemistry C, 2015, 119, 216-227.	3.1	47
46	The origin of active sites for direct synthesis of H 2 O 2 on Pd/TiO 2 catalysts: Interfaces of Pd and PdO domains. Journal of Catalysis, 2015, 321, 70-80.	6.2	121
47	Functionalized silica nanorattles hosting Au nanocatalyst for direct synthesis of H2O2. Catalysis Today, 2015, 248, 28-34.	4.4	9
48	Application of DFT modeling in Fischer–Tropsch synthesis over Co-based catalysts. Chemical Modelling, 2015, , 184-218.	0.4	4
49	Insight into active sites of Pd–Au/TiO2 catalysts in hydrogen peroxide synthesis directly from H2 and O2. Journal of Catalysis, 2014, 311, 129-136.	6.2	120
50	Preparation, Characterization, and Kinetic Study of a Core–Shell Mn ₃ O ₄ @SiO ₂ Nanostructure Catalyst for CO Oxidation. ACS Catalysis, 2014, 4, 4106-4115.	11.2	49
51	Au/carbon as Fenton-like catalysts for the oxidative degradation of bisphenol A. Applied Catalysis B: Environmental, 2013, 134-135, 145-152.	20.2	111
52	Density functional theory study of direct synthesis of H2O2 from H2 and O2 on Pd(111), Pd(100), and Pd(110) surfaces. Chinese Journal of Catalysis, 2013, 34, 1002-1012.	14.0	63
53	Electroreduction of Carbon Dioxide by Heterogenized Cofacial Porphyrins. Transactions of Tianjin University, 0, , 1.	6.4	3