Chinedum O Osuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7305605/publications.pdf

Version: 2024-02-01

44042 42364 9,148 142 48 92 citations h-index g-index papers 143 143 143 11319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 2016, 1 , .	23.3	1,977
2	Structure, function, and self-assembly of single network gyroid (<i>I</i> 4 ₁ 32) photonic crystals in butterfly wing scales. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11676-11681.	3.3	428
3	Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter, 2014, 10, 3867.	1.2	343
4	Omniphobic Membrane for Robust Membrane Distillation. Environmental Science and Technology Letters, 2014, 1, 443-447.	3.9	288
5	Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9793-E9801.	3.3	275
6	Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2861-2868.	4.0	268
7	High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. Environmental Science & Technology, 2018, 52, 7279-7288.	4.6	218
8	Anisotropic Ionic Conductivity in Block Copolymer Membranes by Magnetic Field Alignment. Journal of the American Chemical Society, 2010, 132, 17516-17522.	6.6	192
9	Scalable Fabrication of Polymer Membranes with Vertically Aligned 1 nm Pores by Magnetic Field Directed Self-Assembly. ACS Nano, 2014, 8, 11977-11986.	7.3	183
10	Hybrid Pressure Retarded Osmosis–Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency. Environmental Science & Technology, 2014, 48, 5306-5313.	4.6	129
11	Alignment of Self-Assembled Hierarchical Microstructure in Liquid Crystalline Diblock Copolymers Using High Magnetic Fields. Macromolecules, 2004, 37, 9903-9908.	2.2	128
12	Engineering flat sheet microporous PVDF films for membrane distillation. Journal of Membrane Science, 2015, 492, 355-363.	4.1	118
13	Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science, 2015, 349, 956-960.	6.0	110
14	Magnetic field alignment of block copolymers and polymer nanocomposites: Scalable microstructure control in functional soft materials. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 2-8.	2.4	107
15	Stimuli-Responsive Smart Gels Realized via Modular Protein Design. Journal of the American Chemical Society, 2010, 132, 14024-14026.	6.6	105
16	Role of interparticle attraction in the yielding response of microgel suspensions. Soft Matter, 2013, 9, 5492.	1.2	95
17	Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter, 2016, 12, 157-164.	1,2	93
18	Thin Polymer Films with Continuous Vertically Aligned 1 nm Pores Fabricated by Soft Confinement. ACS Nano, 2016, 10, 150-158.	7.3	92

#	Article	IF	CITATIONS
19	Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications. Journal of Membrane Science, 2017, 530, 158-165.	4.1	91
20	Nanocomposites of Vertically Aligned Single-Walled Carbon Nanotubes by Magnetic Alignment and Polymerization of a Lyotropic Precursor. ACS Nano, 2010, 4, 6651-6658.	7.3	86
21	Shear thickening and scaling of the elastic modulus in a fractal colloidal system with attractive interactions. Physical Review E, 2008, 77, 060402.	0.8	84
22	Highly Selective Vertically Aligned Nanopores in Sustainably Derived Polymer Membranes by Molecular Templating. ACS Nano, 2017, 11, 3911-3921.	7. 3	83
23	Relating Selectivity and Separation Performance of Lamellar Two-Dimensional Molybdenum Disulfide (MoS ₂) Membranes to Nanosheet Stacking Behavior. Environmental Science & Samp; Technology, 2020, 54, 9640-9651.	4.6	82
24	Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space. Nano Letters, 2015, 15, 3735-3742.	4.5	80
25	Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer–Carbon Nanotube Composites. Advanced Intelligent Systems, 2020, 2, 1900163.	3.3	80
26	Facile Alignment of Amorphous Poly(ethylene oxide) Microdomains in a Liquid Crystalline Block Copolymer Using Magnetic Fields: Toward Ordered Electrolyte Membranes. Macromolecules, 2010, 43, 3286-3293.	2.2	79
27	Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. Angewandte Chemie - International Edition, 2018, 57, 8493-8497.	7.2	79
28	Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. Science Advances, 2019, 5, eaav9308.	4.7	79
29	New insights on fumed colloidal rheology—shear thickening and vorticity-aligned structures in flocculating dispersions. Rheologica Acta, 2009, 48, 871-881.	1.1	77
30	Side-Chain Liquid Crystalline Polymer Networks: Exploiting Nanoscale Smectic Polymorphism To Design Shape-Memory Polymers. ACS Nano, 2011, 5, 3085-3095.	7.3	75
31	Directed Assembly of Hybrid Nanomaterials and Nanocomposites. Advanced Materials, 2018, 30, e1705794.	11.1	74
32	Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces. Advanced Materials, 2016, 28, 1940-1949.	11.1	71
33	Poly(ethylenimine)-Based Polymer Blends as Single-Ion Lithium Conductors. Macromolecules, 2014, 47, 3401-3408.	2.2	70
34	Order-Disorder Transition and Alignment Dynamics of a Block Copolymer Under High Magnetic Fields by <i>InÂSitu</i> X-Ray Scattering. Physical Review Letters, 2013, 110, 078301.	2.9	67
35	Thermally Switchable Aligned Nanopores by Magneticâ€Field Directed Selfâ€Assembly of Block Copolymers. Advanced Materials, 2014, 26, 5148-5154.	11.1	66
36	Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system. Soft Matter, 2008, 4, 1388.	1.2	65

#	Article	IF	CITATIONS
37	Single-step microfluidic fabrication of soft monodisperse polyelectrolyte microcapsules by interfacial complexation. Lab on A Chip, 2014, 14, 3494-3497.	3.1	65
38	Nanoscale size effects in crystallization of metallic glass nanorods. Nature Communications, 2015, 6, 8157.	5.8	65
39	Magnetic Field Alignment of a Diblock Copolymer Using a Supramolecular Route. ACS Macro Letters, 2012, 1, 184-189.	2.3	59
40	Molecular Design of Liquid Crystalline Brush-Like Block Copolymers for Magnetic Field Directed Self-Assembly: A Platform for Functional Materials. ACS Macro Letters, 2014, 3, 462-466.	2.3	59
41	Rational Design of a Block Copolymer with a High Interaction Parameter. Macromolecules, 2014, 47, 6687-6696.	2.2	59
42	Transverse Cylindrical Microdomain Orientation in an LC Diblock Copolymer under Oscillatory Shear. Macromolecules, 1999, 32, 7703-7706.	2.2	57
43	Monoliths of Semiconducting Block Copolymers by Magnetic Alignment. ACS Nano, 2013, 7, 5514-5521.	7.3	56
44	Self-Assembly of an Ultrahigh-χ Block Copolymer with Versatile Etch Selectivity. Macromolecules, 2018, 51, 6460-6467.	2.2	56
45	Tailoring Crystallization Behavior of PEO-Based Liquid Crystalline Block Copolymers through Variation in Liquid Crystalline Content. Macromolecules, 2011, 44, 3924-3934.	2.2	54
46	Continuous Equilibrated Growth of Ordered Block Copolymer Thin Films by Electrospray Deposition. ACS Nano, 2013, 7, 2960-2970.	7.3	51
47	Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy. Physical Review Letters, 2015, 115, 258302.	2.9	51
48	Elements Provide a Clue: Nanoscale Characterization of Thin-Film Composite Polyamide Membranes. ACS Applied Materials & Distribution (2015), 7, 16917-16922.	4.0	50
49	Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive Pickering emulsions. Science Robotics, 2020, 5, .	9.9	50
50	Time-resolved viscoelastic properties during structural arrest and aging of a colloidal glass. Physical Review E, 2010, 82, 031404.	0.8	47
51	Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures. Environmental Science & Environmental Science & 12551-12559.	4.6	46
52	Understanding anisotropic transport in self-assembled membranes and maximizing ionic conductivity by microstructure alignment. Soft Matter, 2013, 9, 7106.	1.2	44
53	Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing inÂvivo. Biomaterials, 2015, 40, 61-71.	5.7	43
54	Tuning the permselectivity of polymeric desalination membranes via control of polymer crystallite size. Nature Communications, 2019, 10, 2347.	5.8	43

#	Article	IF	Citations
55	Dynamics of internal stresses and scaling of strain recovery in an aging colloidal gel. Physical Review E, 2009, 80, 010404.	0.8	41
56	Physical aging and relaxation of residual stresses in a colloidal glass following flow cessation. Journal of Rheology, 2010, 54, 943-958.	1.3	40
57	Controlling orientational order in block copolymers using low-intensity magnetic fields. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9437-E9444.	3.3	39
58	Loss of Phospholipid Membrane Integrity Induced by Two-Dimensional Nanomaterials. Environmental Science and Technology Letters, 2017, 4, 404-409.	3.9	39
59	Liquid Crystalline Order and Magnetocrystalline Anisotropy in Magnetically Doped Semiconducting ZnO Nanowires. ACS Nano, 2011, 5, 8357-8364.	7.3	38
60	Viscoelasticity of a colloidal gel during dynamical arrest: Evolution through the critical gel and comparison with a soft colloidal glass. Journal of Rheology, 2014, 58, 1557-1579.	1.3	38
61	Directed Selfâ€Assembly of Hybrid Oxide/Polymer Core/Shell Nanowires with Transport Optimized Morphology for Photovoltaics. Advanced Materials, 2012, 24, 82-87.	11.1	37
62	Fabrication of a Desalination Membrane with Enhanced Microbial Resistance through Vertical Alignment of Graphene Oxide. Environmental Science and Technology Letters, 2018, 5, 614-620.	3.9	37
63	Phase Behavior of Polylactide-Based Liquid Crystalline Brushlike Block Copolymers. Macromolecules, 2015, 48, 8315-8322.	2.2	36
64	Aligned Nanostructured Polymers by Magnetic-Field-Directed Self-Assembly of a Polymerizable Lyotropic Mesophase. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19710-19717.	4.0	35
65	Smart Cellulose Nanofluids Produced by Tunable Hydrophobic Association of Polymer-Grafted Cellulose Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31095-31101.	4.0	34
66	Single crystal texture by directed molecular self-assembly along dual axes. Nature Materials, 2019, 18, 1235-1243.	13.3	34
67	Supramolecular Microphase Separation in a Hydrogen-Bonded Liquid Crystalline Comb Copolymer in the Melt State. Macromolecules, 2006, 39, 3114-3117.	2.2	33
68	Rapid Fabrication by Lyotropic Self-Assembly of Thin Nanofiltration Membranes with Uniform 1 Nanometer Pores. ACS Nano, 2021, 15, 8192-8203.	7.3	33
69	Role of HF in Oxygen Removal from Carbon Nanotubes: Implications for High Performance Carbon Electronics. Nano Letters, 2014, 14, 6179-6184.	4.5	32
70	Smectic Demixing in the Phase Behavior and Self-Assembly of a Hydrogen-Bonded Polymer with Mesogenic Side Chains. Macromolecules, 2010, 43, 6646-6654.	2.2	31
71	Hierarchically Self-Assembled Photonic Materials from Liquid Crystalline Random Brush Copolymers. Macromolecules, 2013, 46, 4558-4566.	2.2	31
72	Soft microcapsules with highly plastic shells formed by interfacial polyelectrolyte–nanoparticle complexation. Soft Matter, 2015, 11, 7478-7482.	1.2	30

#	Article	IF	CITATIONS
73	Photoresponsive and Magnetoresponsive Graphene Oxide Microcapsules Fabricated by Droplet Microfluidics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44192-44198.	4.0	30
74	Cholesteric mesophase in side-chain liquid crystalline polymers: influence of mesogen interdigitation and motional decoupling. Soft Matter, 2012, 8, 3185.	1.2	29
75	Size-dependent viscosity in the super-cooled liquid state of a bulk metallic glass. Applied Physics Letters, 2013, 102, 221901.	1.5	29
76	Morphology Development in Thin Films of a Lamellar Block Copolymer Deposited by Electrospray. Macromolecules, 2014, 47, 5703-5710.	2.2	29
77	Sub-10 nm Self-Assembly of Mesogen-Containing Grafted Macromonomers and Their Bottlebrush Polymers. Macromolecules, 2018, 51, 3680-3690.	2,2	29
78	Lyotropic Self-Assembly of High-Aspect-Ratio Semiconductor Nanowires of Single-Crystal ZnO. Langmuir, 2011, 27, 11616-11621.	1.6	28
79	Shear-accelerated crystallization in a supercooled atomic liquid. Physical Review E, 2015, 91, 020301.	0.8	28
80	Pathway-engineering for highly-aligned block copolymer arrays. Nanoscale, 2018, 10, 416-427.	2.8	28
81	Atomic imprinting into metallic glasses. Communications Physics, 2018, 1, .	2.0	28
82	Lyotropic Hexagonal Ordering in Aqueous Media by Conjugated Hairy-Rod Supramolecules. Macromolecules, 2010, 43, 7549-7555.	2.2	25
83	Controlled Alignment of Lamellar Lyotropic Mesophases by Rotation in a Magnetic Field. Langmuir, 2010, 26, 8737-8742.	1.6	25
84	Optical materials and metamaterials from nanostructured soft matter. Nano Research, 2019, 12, 2172-2183.	5.8	25
85	Dual-Functionality Fullerene and Silver Nanoparticle Antimicrobial Composites via Block Copolymer Templates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33583-33591.	4.0	24
86	Fabrication of Modularly Functionalizable Microcapsules Using Protein-Based Technologies. ACS Biomaterials Science and Engineering, 2016, 2, 1856-1861.	2.6	23
87	Isomeric Effect Enabled Thermally Driven Self-Assembly of Hydroxystyrene-Based Block Copolymers. ACS Macro Letters, 2016, 5, 833-838.	2.3	23
88	Highly stiff yet elastic microcapsules incorporating cellulose nanofibrils. Soft Matter, 2017, 13, 2733-2737.	1.2	23
89	The Effects of Magnetic Field Alignment on Lithium Ion Transport in a Polymer Electrolyte Membrane with Lamellar Morphology. Polymers, 2019, 11, 887.	2.0	23
90	Large area vertical alignment of ZnO nanowires in semiconducting polymer thin films directed by magnetic fields. Nanoscale, 2013, 5, 10511.	2.8	22

#	Article	IF	Citations
91	Optically Active Elastomers from Liquid Crystalline Comb Copolymers with Dual Physical and Chemical Cross-Links. Macromolecules, 2017, 50, 5929-5939.	2.2	22
92	Non-degenerate magnetic alignment of self-assembled mesophases. Soft Matter, 2009, 5, 3417.	1.2	19
93	Alignment of Self-Assembled Structures in Block Copolymer Films by Solvent Vapor Permeation. Macromolecules, 2010, 43, 3132-3135.	2.2	19
94	Directing block copolymer self-assembly with permanent magnets: photopatterning microdomain alignment and generating oriented nanopores. Molecular Systems Design and Engineering, 2017, 2, 549-559.	1.7	19
95	Lyotropic liquid crystals as templates for advanced materials. Journal of Materials Chemistry A, 2021, 9, 21607-21658.	5.2	19
96	Multi-Scale Assembly of Polythiophene-Surfactant Supramolecular Complexes for Charge Transport Anisotropy. Macromolecules, 2017, 50, 1047-1055.	2.2	18
97	Implications of Grain Size Variation in Magnetic Field Alignment of Block Copolymer Blends. ACS Macro Letters, 2017, 6, 404-409.	2.3	17
98	Fast Photoswitchable Order–Disorder Transitions in Liquid-Crystalline Block Co-oligomers. Journal of the American Chemical Society, 2022, 144, 390-399.	6.6	17
99	Multiscale patterning of a metallic glass using sacrificial imprint lithography. Microsystems and Nanoengineering, 2015, $1, \dots$	3.4	16
100	Tunable organic solvent nanofiltration in self-assembled membranes at the sub–1 nm scale. Science Advances, 2022, 8, eabm5899.	4.7	16
101	Nanoimprinting Sub-100 nm Features in a Photovoltaic Nanocomposite using Durable Bulk Metallic Glass Molds. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3456-3461.	4.0	15
102	Effect of Final Monomer Deposition Steps on Molecular Layer-by-Layer Polyamide Surface Properties. Langmuir, 2016, 32, 10815-10823.	1.6	15
103	Strong Orientational Coupling of Block Copolymer Microdomains to Smectic Layering Revealed by Magnetic Field Alignment. ACS Macro Letters, 2016, 5, 292-296.	2.3	15
104	Electrospray deposition tool: Creating compositionally gradient libraries of nanomaterials. Review of Scientific Instruments, 2020, 91, 013701.	0.6	15
105	Stable Sequestration of Single-Walled Carbon Nanotubes in Self-Assembled Aqueous Nanopores. Journal of the American Chemical Society, 2012, 134, 3950-3953.	6.6	14
106	Finite size effects in the crystallization of a bulk metallic glass. Applied Physics Letters, 2013, 103, .	1.5	14
107	Evaluating the Dispersant Stabilization of Colloidal Suspensions from the Scaling Behavior of Gel Rheology and Adsorption Measurements. Langmuir, 2018, 34, 1092-1099.	1.6	14
108	Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. Angewandte Chemie, 2018, 130, 8629-8633.	1.6	13

#	Article	IF	CITATIONS
109	Creating Aligned Nanopores by Magnetic Field Processing of Block Copolymer/Homopolymer Blends. ACS Macro Letters, 2019, 8, 261-266.	2.3	13
110	Sequential deposition of block copolymer thin films and formation of lamellar heterolattices by electrospray deposition. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 247-253.	2.4	12
111	Facile Protein Immobilization Using Engineered Surface-Active Biofilm Proteins. ACS Applied Nano Materials, 2018, 1, 2483-2488.	2.4	12
112	Film Thickness and Composition Effects in Symmetric Ternary Block Copolymer/Homopolymer Blend Films: Domain Spacing and Orientation. Macromolecules, 2021, 54, 7970-7986.	2.2	12
113	Dynamic magnetic field alignment and polarized emission of semiconductor nanoplatelets in a liquid crystal polymer. Nature Communications, 2022, 13, 2507.	5.8	12
114	Aligned Morphologies in Near-Edge Regions of Block Copolymer Thin Films. Macromolecules, 2019, 52, 7224-7233.	2.2	11
115	Stable cross-linked lyotropic gyroid mesophases from single-head/single-tail cross-linkable monomers. Chemical Communications, 2021, 57, 10931-10934.	2.2	11
116	Scalable Highâ€fidelity Growth of Semiconductor Nanorod Arrays with Controlled Geometry for Photovoltaic Devices Using Block Copolymers. Small, 2014, 10, 4304-4309.	5.2	10
117	Physical Continuity and Vertical Alignment of Block Copolymer Domains by Kinetically Controlled Electrospray Deposition. Macromolecular Rapid Communications, 2015, 36, 1290-1296.	2.0	10
118	Experimental Evidence for Proposed Transformation Pathway from the Inverse Hexagonal to Inverse Diamond Cubic Phase from Oriented Lipid Samples. Langmuir, 2015, 31, 7707-7711.	1.6	10
119	Flat Drops, Elastic Sheets, and Microcapsules by Interfacial Assembly of a Bacterial Biofilm Protein, BslA. Langmuir, 2017, 33, 13590-13597.	1.6	10
120	Hexagonally Ordered Arrays of \hat{l}_{\pm} -Helical Bundles Formed from Peptide-Dendron Hybrids. Journal of the American Chemical Society, 2017, 139, 15977-15983.	6.6	9
121	Polymer Nanosheets from Supramolecular Assemblies of Conjugated Linoleic Acid–High Surface Area Adsorbents from Renewable Materials. Langmuir, 2017, 33, 10690-10697.	1.6	9
122	Nanocomposites of 2D-MoS ₂ Exfoliated in Thermotropic Liquid Crystals., 2021, 3, 704-712.		9
123	100th Anniversary of Macromolecular Science Viewpoint: Opportunities for Liquid Crystal Polymers in Nanopatterning and Beyond. ACS Macro Letters, 2021, 10, 945-957.	2.3	9
124	Nanoscale Thickness Control of Nanoporous Films Derived from Directionally Photopolymerized Mesophases. Advanced Materials Interfaces, 2021, 8, 2001977.	1.9	9
125	High-throughput morphology mapping of self-assembling ternary polymer blends. RSC Advances, 2020, 10, 42529-42541.	1.7	9
126	Continuous and patterned deposition of functional block copolymer thin films using electrospray. MRS Communications, 2015, 5, 235-242.	0.8	8

#	Article	IF	Citations
127	Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 2021, 11, 16478.	1.6	7
128	Simple production of cellulose nanofibril microcapsules and the rheology of their suspensions. Soft Matter, 2021, 17, 4517-4524.	1.2	7
129	Synthesis of High Etch Contrast Poly(3-hydroxystyrene)-Based Triblock Copolymers and Self-Assembly of Sub-5 nm Features. Macromolecules, 2021, 54, 9542-9550.	2.2	7
130	Synthesis and suspension rheology of titania nanoparticles grafted with zwitterionic polymer brushes. Journal of Colloid and Interface Science, 2012, 386, 135-140.	5.0	6
131	Effects of Labile Mesogens on the Morphology of Liquid Crystalline Block Copolymers in Thin Films. Macromolecules, 2021, 54, 3223-3231.	2.2	6
132	Two-Photon Laser Microprinting of Highly Ordered Nanoporous Materials Based on Hexagonal Columnar Liquid Crystals. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33746-33755.	4.0	6
133	Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer–Carbon Nanotube Composites. Advanced Intelligent Systems, 2020, 2, 2070063.	3.3	5
134	Self-assembly of supramolecular complexes of charged conjugated polymers and imidazolium-based ionic liquid crystals. Giant, 2022, 9, 100088.	2.5	5
135	Rapid fabrication of ZnO nanorod arrays with controlled spacing by micelle-templated solvothermal growth. Nanoscale, 2016, 8, 149-156.	2.8	4
136	Yielding and bifurcated aging in nanofibrillar networks. Physical Review Materials, 2020, 4, .	0.9	4
137	Correlation of droplet elasticity and volume fraction effects on emulsion dynamics. Soft Matter, 2020, 16, 2574-2580.	1.2	3
138	Three-Dimensional Compatible Sacrificial Nanoimprint Lithography for Tuning the Wettability of Thermoplastic Materials. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.8	2
139	Plasmonic Sensing from Vertical Au-Coated ZnO Nanorod Arrays Templated by Block Copolymers. ACS Applied Nano Materials, 2021, 4, 8556-8563.	2.4	2
140	Dynamics of Transient Vorticity-Aligned Structures and Internal Stresses in Shear Thickening Colloidal Gels. AIP Conference Proceedings, 2008, , .	0.3	1
141	Electrocatalysts: Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces (Adv. Mater. 10/2016). Advanced Materials, 2016, 28, 1902-1902.	11.1	0
142	Domain Orientation in Bulk Block Copolymers. , 2014, , 1-10.		0