Viktor Umansky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7304637/publications.pdf

Version: 2024-02-01

44069 33894 10,886 103 48 99 citations h-index g-index papers 108 108 108 15865 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ADCK2 Knockdown Affects the Migration of Melanoma Cells via MYL6. Cancers, 2022, 14, 1071.	3.7	11
2	STAT3 inhibitor Napabucasin abrogates MDSC immunosuppressive capacity and prolongs survival of melanoma-bearing mice. , 2022, 10 , e004384.		21
3	IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cellular Immunology, 2021, 359, 104254.	3.0	141
4	Potential therapeutic effect of low-dose paclitaxel in melanoma patients resistant to immune checkpoint blockade: A pilot study. Cellular Immunology, 2021, 360, 104274.	3.0	8
5	Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression. Cancers, 2021, 13, 726.	3.7	20
6	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
7	<scp>FOXD1</scp> promotes dedifferentiation and targeted therapy resistance in melanoma by regulating the expression of connective tissue growth factor. International Journal of Cancer, 2021, 149, 657-674.	5.1	14
8	Neutrophils in Tumorigenesis: Missing Targets for Successful Next Generation Cancer Therapies?. International Journal of Molecular Sciences, 2021, 22, 6744.	4.1	15
9	Tumor promoting capacity of polymorphonuclear myeloidâ€derived suppressor cells and their neutralization. International Journal of Cancer, 2021, 149, 1628-1638.	5.1	16
10	Depletion and Maturation of Myeloid-Derived Suppressor Cells in Murine Cancer Models. Methods in Molecular Biology, 2021, 2236, 67-75.	0.9	2
11	Tumor-Derived Factors Differentially Affect the Recruitment and Plasticity of Neutrophils. Cancers, 2021, 13, 5082.	3.7	8
12	Involvement of platelet-derived VWF in metastatic growth of melanoma in the brain. Neuro-Oncology Advances, 2021, 3, vdab175.	0.7	1
13	SOX2 in development and cancer biology. Seminars in Cancer Biology, 2020, 67, 74-82.	9.6	186
14	Mithramycin A and Mithralog EC-8042 Inhibit SETDB1 Expression and Its Oncogenic Activity in Malignant Melanoma. Molecular Therapy - Oncolytics, 2020, 18, 83-99.	4.4	21
15	IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. , 2020, 8, e000949.		59
16	Myeloid Cell Modulation by Tumor-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 6319.	4.1	26
17	Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation., 2020, 8, e001223.		104
18	Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors. Oncolmmunology, 2020, 9, 1727116.	4.6	52

#	Article	IF	CITATIONS
19	T-type calcium channel inhibition restores sensitivity to MAPK inhibitors in de-differentiated and adaptive melanoma cells. British Journal of Cancer, 2020, 122, 1023-1036.	6.4	20
20	Dormant tumor cells interact with memory CD8+ T cells in RET transgenic mouse melanoma model. Cancer Letters, 2020, 474, 74-81.	7.2	12
21	Enhanced expression of CD39 and CD73 on T cells in the regulation of anti-tumor immune responses. Oncolmmunology, 2020, 9, 1744946.	4. 6	37
22	Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma. International Journal of Molecular Sciences, 2020, 21, 2367.	4.1	34
23	Perspective – Escape from destruction: how cancer-derived EVs are protected from phagocytosis. Trillium Extracellular Vesicles, 2020, 2, 60-64.	0.3	2
24	A universal antiâ€cancer vaccine: Chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival. International Journal of Cancer, 2019, 144, 909-921.	5.1	5
25	Interactions among myeloid regulatory cells in cancer. Cancer Immunology, Immunotherapy, 2019, 68, 645-660.	4.2	42
26	Melanoma Extracellular Vesicles Generate Immunosuppressive Myeloid Cells by Upregulating PD-L1 via TLR4 Signaling. Cancer Research, 2019, 79, 4715-4728.	0.9	97
27	ADP secreted by dying melanoma cells mediates chemotaxis and chemokine secretion of macrophages via the purinergic receptor P2Y12. Cell Death and Disease, 2019, 10, 760.	6.3	18
28	Tumor-Specific Regulatory T Cells from the Bone Marrow Orchestrate Antitumor Immunity in Breast Cancer. Cancer Immunology Research, 2019, 7, 1998-2012.	3.4	18
29	Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunology, Immunotherapy, 2019, 68, 687-697.	4.2	168
30	Histone methyltransferase SETDB1 contributes to melanoma tumorigenesis and serves as a new potential therapeutic target. International Journal of Cancer, 2019, 145, 3462-3477.	5.1	46
31	Targeting the Post-Irradiation Tumor Microenvironment in Glioblastoma via Inhibition of CXCL12. Cancers, 2019, 11, 272.	3.7	15
32	Complex Formation with Monomeric α-Tubulin and Importin 13 Fosters c-Jun Protein Stability and Is Required for c-Jun's Nuclear Translocation and Activity. Cancers, 2019, 11, 1806.	3.7	6
33	Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. British Journal of Cancer, 2019, 120, 16-25.	6.4	504
34	Opposing roles of eosinophils in cancer. Cancer Immunology, Immunotherapy, 2019, 68, 823-833.	4.2	86
35	Fighting infant infections with myeloid-derived suppressor cells. Journal of Clinical Investigation, 2019, 129, 4080-4082.	8.2	5
36	Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncolmmunology, 2018, 7, e1442167.	4.6	67

#	Article	IF	CITATIONS
37	Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models. Oncolmmunology, 2018, 7, e1445457.	4.6	13
38	Circulating and Tumor Myeloid-derived Suppressor Cells in Resectable Non–Small Cell Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 777-787.	5.6	129
39	Editorial: Two MDSC faces in obesity: Correcting metabolic dysfunctions but promoting tumor development. Journal of Leukocyte Biology, 2018, 103, 373-375.	3.3	2
40	CCR5+ Myeloid-Derived Suppressor Cells Are Enriched and Activated in Melanoma Lesions. Cancer Research, 2018, 78, 157-167.	0.9	127
41	The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Wspolczesna Onkologia, 2018, 2018, 7-13.	1.4	23
42	Targeting SOX2 in anticancer therapy. Expert Opinion on Therapeutic Targets, 2018, 22, 983-991.	3.4	60
43	Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression. Frontiers in Immunology, 2018, 9, 398.	4.8	354
44	Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Frontiers in Immunology, 2018, 9, 1310.	4.8	404
45	Loss of neural crestâ€associated gene <i>FOXD1</i> impairs melanoma invasion and migration <i>via RAC1B</i> downregulation. International Journal of Cancer, 2018, 143, 2962-2972.	5.1	25
46	SOX2â€mediated upregulation of CD24 promotes adaptive resistance toward targeted therapy in melanoma. International Journal of Cancer, 2018, 143, 3131-3142.	5.1	66
47	Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. Journal of Clinical Investigation, 2018, 128, 5505-5516.	8.2	193
48	Identification of inhibitors of myeloid-derived suppressor cells activity through phenotypic chemical screening. Oncolmmunology, 2017, 6, e1258503.	4.6	12
49	CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunology, Immunotherapy, 2017, 66, 1015-1023.	4.2	68
50	Melanoma-Derived iPCCs Show Differential Tumorigenicity and Therapy Response. Stem Cell Reports, 2017, 8, 1379-1391.	4.8	33
51	Tadalafil has biologic activity in human melanoma. Results of a pilot trial with <u>Ta</u> dalafil in patients with metastatic Melanoma (TaMe). Oncolmmunology, 2017, 6, e1326440.	4.6	74
52	CCR5 Directs the Mobilization of CD11b+Gr1+Ly6Clow Polymorphonuclear Myeloid Cells from the Bone Marrow to the Blood to Support Tumor Development. Cell Reports, 2017, 21, 2212-2222.	6.4	83
53	Myeloid-derived suppressor cells and tumor escape from immune surveillance. Seminars in Immunopathology, 2017, 39, 295-305.	6.1	63
54	Heparins that block VEGF-A-mediated von Willebrand factor fiber generation are potent inhibitors of hematogenous but not lymphatic metastasis. Oncotarget, 2016, 7, 68527-68545.	1.8	33

#	Article	IF	Citations
55	The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines, 2016, 4, 36.	4.4	296
56	Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells. Stem Cells, 2016, 34, 832-846.	3.2	27
57	T-Cell Therapy Enabling Adenoviruses Coding for IL2 and TNFα Induce Systemic Immunomodulation in Mice With Spontaneous Melanoma. Journal of Immunotherapy, 2016, 39, 343-354.	2.4	21
58	Ret mouse very large tumors (VLTs) display altered ratios of infiltrating memory to naive T cells: Roles in tumor expansion. Pathophysiology, 2016, 23, 211-220.	2.2	1
59	Macrophage-derived nitric oxide initiates T-cell diapedesis and tumor rejection. Oncolmmunology, 2016, 5, e1204506.	4.6	45
60	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	12.8	2,076
61	Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation. Cancer Research, 2016, 76, 4359-4371.	0.9	81
62	mRNA-based dendritic cell immunization improves survival in ret transgenic mouse melanoma model. Oncolmmunology, 2016, 5, e1160183.	4.6	4
63	Predictive immune markers in advanced melanoma patients treated with ipilimumab. Oncolmmunology, 2016, 5, e1158901.	4.6	23
64	Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. Journal of Clinical Investigation, 2016, 126, 921-937.	8.2	71
65	Elevated chronic inflammatory factors and myeloidâ€derived suppressor cells indicate poor prognosis in advanced melanoma patients. International Journal of Cancer, 2015, 136, 2352-2360.	5.1	142
66	von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood, 2015, 125, 3153-3163.	1.4	110
67	Diminished levels of the soluble form of <scp>RAGE</scp> are related to poor survival in malignant melanoma. International Journal of Cancer, 2015, 137, 2607-2617.	5.1	28
68	Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncolmmunology, 2015, 4, e1008371.	4.6	227
69	Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncolmmunology, 2015, 4, e998519.	4.6	89
70	Myeloid Cells and Related Chronic Inflammatory Factors as Novel Predictive Markers in Melanoma Treatment with Ipilimumab. Clinical Cancer Research, 2015, 21, 5453-5459.	7.0	304
71	Harnessing High Density Lipoproteins to Block Transforming Growth Factor Beta and to Inhibit the Growth of Liver Tumor Metastases. PLoS ONE, 2014, 9, e96799.	2.5	12
72	Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals. Oncotarget, 2014, 5, 4516-4528.	1.8	29

#	Article	IF	Citations
73	Extracellular adenosine metabolism in immune cells in melanoma. Cancer Immunology, Immunotherapy, 2014, 63, 1073-1080.	4.2	53
74	Novel insights into exosome-induced, tumor-associated inflammation and immunomodulation. Seminars in Cancer Biology, 2014, 28, 51-57.	9.6	63
75	CTLA-4 and PD-L1 Checkpoint Blockade Enhances Oncolytic Measles Virus Therapy. Molecular Therapy, 2014, 22, 1949-1959.	8.2	249
76	Myeloidâ€derived suppressor cells in malignant melanoma. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.8	44
77	Myeloide Suppressorzellen (MDSC) beim malignen Melanom. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.8	14
78	Body Fluid Exosomes Promote Secretion of Inflammatory Cytokines in Monocytic Cells via Toll-like Receptor Signaling. Journal of Biological Chemistry, 2013, 288, 36691-36702.	3.4	203
79	Cyclophosphamide Promotes Chronic Inflammation–Dependent Immunosuppression and Prevents Antitumor Response in Melanoma. Journal of Investigative Dermatology, 2013, 133, 1610-1619.	0.7	91
80	Tumor Microenvironment and Myeloid-Derived Suppressor Cells. Cancer Microenvironment, 2013, 6, 169-177.	3.1	112
81	Lowâ€dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. International Journal of Cancer, 2013, 133, 98-107.	5.1	138
82	<i>Ret</i> transgenic mouse model of spontaneous skin melanoma: focus on regulatory <scp>T</scp> cells. Pigment Cell and Melanoma Research, 2013, 26, 457-463.	3.3	9
83	Antitumor Effect of Paclitaxel Is Mediated by Inhibition of Myeloid-Derived Suppressor Cells and Chronic Inflammation in the Spontaneous Melanoma Model. Journal of Immunology, 2013, 190, 2464-2471.	0.8	195
84	ChemoImmunoModulation: Focus on Myeloid Regulatory Cells. , 2013, , 603-619.		0
85	T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma. Cancers, 2012, 4, 490-503.	3.7	14
86	New strategies for melanoma immunotherapy. Oncolmmunology, 2012, 1, 765-767.	4.6	5
87	Regulatory T Cells Stimulate B7-H1 Expression in Myeloid-Derived Suppressor Cells in ret Melanomas. Journal of Investigative Dermatology, 2012, 132, 1239-1246.	0.7	131
88	Application of paclitaxel in low non-cytotoxic doses supports vaccination with melanoma antigens in normal mice. Journal of Immunotoxicology, 2012, 9, 275-281.	1.7	52
89	Comment on "Adenosinergic Regulation of the Expansion and Immunosuppressive Activity of CD11b+Gr1+ Cells― Journal of Immunology, 2012, 188, 2929-2930.	0.8	11
90	Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells <i>in vitro</i> in a TLR4-independent manner. Journal of Immunotoxicology, 2012, 9, 292-300.	1.7	124

#	Article	IF	Citations
91	Characterization and longitudinal monitoring of melanoma growth inret-transgenic mice using a single-sequence MRI protocol. Experimental Dermatology, 2012, 21, 837-841.	2.9	0
92	Tumor-Infiltrating Monocytic Myeloid-Derived Suppressor Cells Mediate CCR5-Dependent Recruitment of Regulatory T Cells Favoring Tumor Growth. Journal of Immunology, 2012, 189, 5602-5611.	0.8	341
93	Melanoma-induced immunosuppression and its neutralization. Seminars in Cancer Biology, 2012, 22, 319-326.	9.6	106
94	Immunosuppression in the tumor microenvironment: Where are we standing?. Seminars in Cancer Biology, 2012, 22, 273-274.	9.6	7
95	Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation. Cancer Immunology, Immunotherapy, 2012, 61, 275-282.	4.2	57
96	Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17111-17116.	7.1	303
97	Activation of p38 Mitogen-Activated Protein Kinase Drives Dendritic Cells to Become Tolerogenic in <i>Ret</i> Transgenic Mice Spontaneously Developing Melanoma. Clinical Cancer Research, 2009, 15, 4382-4390.	7.0	70
98	Skin Melanoma Development in ret Transgenic Mice Despite the Depletion of CD25+Foxp3+ Regulatory T Cells in Lymphoid Organs. Journal of Immunology, 2009, 183, 6330-6337.	0.8	55
99	Effect of artesunate on immune cells in ret-transgenic mouse melanoma model. Anti-Cancer Drugs, 2009, 20, 910-917.	1.4	29
100	Melanoma-Specific Memory T Cells Are Functionally Active in <i>Ret</i> Transgenic Mice without Macroscopic Tumors. Cancer Research, 2008, 68, 9451-9458.	0.9	60
101	Melanoma-Reactive T Cells in the Bone Marrow of Melanoma Patients: Association with Disease Stage and Disease Duration. Cancer Research, 2006, 66, 5997-6001.	0.9	30
102	Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. Journal of Clinical Investigation, 2004, 114, 67-76.	8.2	101
103	Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Medicine, 2003, 9, 1151-1157.	30.7	301