Jingyang Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/730460/publications.pdf

Version: 2024-02-01

66343 102487 7,039 268 42 66 citations h-index g-index papers 272 272 272 3298 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	dl-Serine covalently modified multinuclear lanthanide-implanted arsenotungstates with fast photochromism. Chinese Chemical Letters, 2023, 34, 107238.	9.0	27
2	Construction of one Ru2W12-cluster and six lacunary Keggin tungstoarsenate leading to the larger Ru-containing polyoxometalate photocatalyst. Chinese Chemical Letters, 2022, 33, 4664-4668.	9.0	15
3	Two novel telluroniobates with efficient catalytic activity for the imidation/amidation reaction. Chemical Communications, 2022, 58, 1167-1170.	4.1	11
4	Synthesis, structure and properties of three novel transition-metal-containing tantalum-phosphate clusters. Chinese Chemical Letters, 2022, 33, 4675-4678.	9.0	10
5	Binuclear Ru(III)-Containing Polyoxometalate with Efficient Photocatalytic Activity for Oxidative Coupling of Amines to Imines. Inorganic Chemistry, 2022, 61, 2076-2085.	4.0	13
6	Synergistic Effect of Nickel Oxyhydroxide and Tungsten Carbide in Electrocatalytic Alcohol Oxidation. Chemistry of Materials, 2022, 34, 959-969.	6.7	16
7	Organic–inorganic one-dimensional hybrid aggregates constructed from aromatic-bisphosphonate-functionalized polyoxomolybdates. Dalton Transactions, 2022, , .	3.3	4
8	Copper-Containing Polyoxometalate-Based Metalâ€"Organic Framework as a Catalyst for the Oxidation of Silanes: Effective Cooperative Catalysis by Metal Sites and POM Precursor. Inorganic Chemistry, 2022, 61, 4056-4061.	4.0	7
9	Luminescent Dimeric Oxalate-Bridged Eu ³⁺ /Tb ³⁺ -Implanted Arsenotungstates: Tunable Emission, Energy Transfer, and Detection of Ba ²⁺ Ion in Aqueous Solution. Inorganic Chemistry, 2022, 61, 3387-3395.	4.0	20
10	Enhanced Electrochemical O ₂ â€toâ€H ₂ O ₂ Synthesis Via Cuâ€Pb Synergistic Interplay. Small, 2022, 18, e2106534.	10.0	7
11	Discovery of Kinetic Effect in a Valence Tautomeric Cobalt-Dioxolene Complex. Inorganic Chemistry, 2022, 61, 4240-4245.	4.0	3
12	Oxalate-bridging Nd ^{III} -based arsenotungstate with multifunctional NIR-luminescence and magnetic properties. Dalton Transactions, 2022, 51, 10257-10265.	3.3	8
13	Controlled Assembly of Ru-Containing Polyoxometalates for Photocatalytic Activity of the Primary Amine Coupling Reaction. Inorganic Chemistry, 2022, 61, 9935-9945.	4.0	9
14	Enhanced Carrier Separation in Visible-Light-Responsive Polyoxometalate-Based Metal–Organic Frameworks for Highly Efficient Oxidative Coupling of Amines. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27882-27890.	8.0	29
15	Polyoxomolybdates as efficient catalysts for Knoevenagel condensation reaction of benzaldehyde and ethyl cyanoacetate under mild condition. Journal of Materials Science, 2021, 56, 4654-4665.	3.7	11
16	A Polyoxometalate-Based Inorganic Porous Material with both Proton and Electron Conductivity by Light Actuation: Photocatalysis for Baeyer–Villiger Oxidation and Cr(VI) Reduction. Inorganic Chemistry, 2021, 60, 682-691.	4.0	32
17	Synthesis, structures and stability of three V-substituted polyoxoniobate clusters based on [TeNb ₉ O ₃₃] ^{17â°'} units. Dalton Transactions, 2021, 50, 7610-7620.	3.3	8
18	A Rh-substituted polyoxometalate with an acetate-modified building block {As ₂ W ₂₂ O ₇₆ (CH ₃ COO) ₂ }. Chemical Communications, 2021, 57, 10250-10253.	4.1	8

#	Article	IF	Citations
19	Ru(<scp>iii</scp>) -based polyoxometalate tetramers as highly efficient heterogeneous catalysts for alcohol oxidation reactions at room temperature. Dalton Transactions, 2021, 50, 12664-12673.	3.3	5
20	A large copper-niobate cluster with the pagoda-shaped subunit {Nb ₂₀ O ₅₉ }. Chemical Communications, 2021, 57, 3999-4002.	4.1	4
21	Recent advances in rare earth co-doped luminescent tungsten oxygen complexes. Inorganic Chemistry Frontiers, 2021, 8, 4158-4176.	6.0	17
22	Synthesis, structure and catalytic study of a new sandwiched-type vanadoselenite. Inorganic Chemistry Communication, 2021, 124, 108407.	3.9	2
23	Underappreciated Role of Low-Energy Facets in Nitrogen Electroreduction., 2021, 3, 327-330.		13
24	Lacunary {Se ₄ V ₁₀ } Heteropolyoxovanadate Precursor with Monometal, Metal-Richer-Sandwiched Derivatives {Se ₈ V ₂₀ M} and {Se ₈ V ₂₀ M ₃ }: Correlations between the Synthesis, Structure, and Catalytic Property. Inorganic Chemistry, 2021, 60, 2888-2892.	4.0	4
25	A 3D Silverton-Type Polyoxomolybdate Based on {PrMo12O42}: Synthesis, Structure, Photoluminescence and Magnetic Properties. Frontiers in Chemistry, 2021, 9, 615595.	3.6	3
26	A Copper-Containing Polyoxometalate-Based Metal–Organic Framework as an Efficient Catalyst for Selective Catalytic Oxidation of Alkylbenzenes. Inorganic Chemistry, 2021, 60, 4792-4799.	4.0	32
27	Polyoxometalate-Incorporated Framework as a Heterogeneous Catalyst for Selective Oxidation of C–H Bonds of Alkylbenzenes. Inorganic Chemistry, 2021, 60, 7753-7761.	4.0	25
28	Multinuclear Lanthanide-Implanted Tetrameric Dawson-Type Phosphotungstates with Switchable Luminescence Behaviors Induced by Fast Photochromism. Inorganic Chemistry, 2021, 60, 8164-8172.	4.0	21
29	Defectâ€Rich Coreâ€Shell Carbon Derived from Ionic Liquid for Direct Synthesis of Imines. ChemistrySelect, 2021, 6, 5961-5966.	1.5	0
30	Organophosphonate-Functionalized Telluromolybdate Containing a [TeMo ₁₀ O ₃₇] ^{10–} Building Block and Its Catalytic Efficiency for Knoevenagel Condensation. Inorganic Chemistry, 2021, 60, 14872-14879.	4.0	10
31	Discovery of two Na ⁺ -centered Silverton-type polyoxometalates {NaM ₁₂ O ₄₂ } (M = Mo, W). Chemical Communications, 2021, 57, 2172-2175.	4.1	14
32	Ultrafine Co ₆ W ₆ C as an efficient anode catalyst for direct hydrazine fuel cells. Chemical Communications, 2021, 57, 10415-10418.	4.1	6
33	Regulating the catalytic activity of multi-Ru-bridged polyoxometalates based on differential active site environments with six-coordinate geometry and five-coordinate geometry transitions. Nanoscale, 2021, 13, 8077-8086.	5.6	20
34	Assembly of a Hexameric Cluster of Polyoxomolybdotriphosphonate Builts from [Zn(H ₂ O){TeMo ₆ O ₂₁ }{N(CH ₂ PO ₃) _{3<subunits 15759-15767.<="" 2021,="" 60,="" and="" catalytic="" chemistry,="" inorganic="" its="" optical="" properties.="" td=""><td>/sub•.•)]<su< td=""><td>p>6–</td></su<></td></subunits>}	/sub•.•)] <su< td=""><td>p>6–</td></su<>	p> 6 –
35	Luminescent dimeric polyoxotungstate [Ho(C4H2O6)(α-PW11O39)]216â^' with magnetism and reversible photochromism. Journal of Luminescence, 2020, 217, 116760.	3.1	14
36	An organic chromophore -modified samarium-containing polyoxometalate: excitation-dependent color tunable behavior from the organic chromophores to the lanthanide ion. Dalton Transactions, 2020, 49, 388-394.	3.3	28

#	Article	IF	CITATIONS
37	Photoactive Metal–Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. ACS Applied Materials & Diterfaces, 2020, 12, 2199-2206.	8.0	66
38	Versatile {Cp ₂ Ti} Grafted Hetero-Polyoxotungstate Clusters: Synthesis, Crystal Structure, and Photocurrent Properties. Inorganic Chemistry, 2020, 59, 1125-1136.	4.0	10
39	H-shaped oxalate-bridging lanthanoid-incorporated arsenotungstates. Dalton Transactions, 2020, 49, 15731-15738.	3.3	9
40	Synthesis and Characterization of a Crown-Shaped 36-Molybdate Cluster and Application in Catalyzing Knoevenagel Condensation. Inorganic Chemistry, 2020, 59, 10665-10672.	4.0	36
41	Synthesis and characterization of an octanuclear nickel(II) polyoxometalate cluster. Journal of Coordination Chemistry, 2020, 73, 2383-2390.	2.2	0
42	A silver-substituted phosphomolybdate prevents the growth of bacteria without affecting the balance of reactive oxygen species. CrystEngComm, 2020, 22, 7832-7837.	2.6	16
43	Synthesis and Mechanism Studies of a High-Nuclear Mn ₇₂ W ₄₈ Cluster. Inorganic Chemistry, 2020, 59, 13733-13740.	4.0	6
44	A large molecular cluster with high proton release capacity. Chemical Communications, 2020, 56, 12849-12852.	4.1	9
45	Magnetic field and dilution effects on the slow relaxation of {Er ₃ } triangle-based arsenotungstate single-molecule magnets. Dalton Transactions, 2020, 49, 12458-12465.	3.3	13
46	Selenotungstates incorporating organophosphonate ligands and metal ions: synthesis, characterization, magnetism and catalytic efficiency in the Knoevenagel condensation reaction. Dalton Transactions, 2020, 49, 7420-7425.	3.3	8
47	36â€Nuclearity Organophosphonateâ€Functionalized Polyoxomolybdates: Synthesis, Characterization and Selective Catalytic Oxidation of Sulfides. Chemistry - A European Journal, 2020, 26, 14896-14902.	3.3	14
48	Sandwich-Type Heteropolyniobate Templated by Mixed Heteroanions. Inorganic Chemistry, 2020, 59, 7895-7899.	4.0	17
49	Oxyfunctionalization of Alkanes Based on a Tricobalt(II)-Substituted Dawson-Type Rhenium Carbonyl Derivative as Catalyst. Inorganic Chemistry, 2020, 59, 8690-8698.	4.0	13
50	Unraveling the Effects of Cobalt on Crystal Growth and Solution Behavior of Nb6P2W12-based Dimeric Clusters. Inorganic Chemistry, 2020, 59, 6747-6754.	4.0	9
51	Discovery of the selenotantalate building block and its lanthanide derivatives: design, synthesis, and RhB decolorization properties. Dalton Transactions, 2020, 49, 4078-4083.	3.3	6
52	A Lacunary Polyoxovanadate Precursor and Transitionâ€Metalâ€Sandwiched Derivatives for Catalytic Oxidation of Sulfides. Chemistry - A European Journal, 2020, 26, 8760-8766.	3.3	26
53	A 1D Helical Chain Heterpolyniobate Templated by AsO ₃ ^{3–} . Inorganic Chemistry, 2020, 59, 1967-1972.	4.0	14
54	Trinuclear ruthenium core-containing polyoxometalate-based hybrids: preparation, characterization and catalytic behavior. Dalton Transactions, 2020, 49, 2895-2904.	3.3	17

#	Article	IF	CITATIONS
55	A Nonclassical Polyoxoanion [P ₃ W ₆ (O ₂) ₆ (OH) ₂ O ₂₂] ^{7â€ Constructed by Two {PW₃(O₂)₃(OH)O₉} Subunits and a {PO₄} Group. European Journal of Inorganic Chemistry, 2019, 2019, 523-528.}	€" <u>{</u> sup>	2
56	A novel peroxopolyoxoniobate incorporating mixed heteroatoms: [P ₂ Se ₂ Nb ₆ (O ₂) ₆ O ₂] _{8â^'< Dalton Transactions, 2019, 48, 13135-13138.}	/s 8µ3 >.	9
57	Pyrazine dicarboxylate-bridged arsenotungstate: synthesis, characterization, and catalytic activities in epoxidation of olefins and oxidation of alcohols. Dalton Transactions, 2019, 48, 12956-12963.	3.3	15
58	Synthesis, characterization, and photoluminescence properties of three two-dimensional lanthanide-containing Dawson-type polyoxometalates. Dalton Transactions, 2019, 48, 13850-13857.	3.3	18
59	Ternary supramolecular system for photocatalytic oxidation with air by consecutive photo-induced electron transfer processes. Journal of Catalysis, 2019, 376, 161-167.	6.2	59
60	Efficient Olefins Epoxidation on Ultrafine H ₂ Oâ€"WO _{<i>x</i>} Nanoparticles with Spectroscopic Evidence of Intermediate Species. ACS Catalysis, 2019, 9, 7641-7650.	11.2	28
61	A PHBA-functionalized organic-inorganic hybrid polyoxometalate as a luminescent probe for selectively sensing chromium and calcium in aqueous solution. Dyes and Pigments, 2019, 171, 107696.	3.7	27
62	A binuclear copper-substituted phosphomolybdate with reactive oxygen species catalytic ability and antimicrobial activity. CrystEngComm, 2019, 21, 394-398.	2.6	20
63	Copper-Containing Polyoxometalate-Based Metal–Organic Frameworks as Highly Efficient Heterogeneous Catalysts toward Selective Oxidation of Alkylbenzenes. Inorganic Chemistry, 2019, 58, 15832-15840.	4.0	47
64	Polyoxometalate-supported metal carbonyl derivatives: from synthetic strategies to structural diversity and applications. Inorganic Chemistry Frontiers, 2019, 6, 3041-3056.	6.0	16
65	Assembly of Lanthanide-Containing Polyoxotantalate Clusters with Efficient Photoluminescence Properties. Inorganic Chemistry, 2019, 58, 13030-13036.	4.0	30
66	Selectivity-tunable amine aerobic oxidation catalysed by metal-free N,O-doped carbons. Chemical Communications, 2019, 55, 12251-12254.	4.1	10
67	Synthesis, characterization and catalytic epoxidation properties of a new tellurotungstate(<scp>iv</scp>)-supported rhenium carbonyl derivative. Dalton Transactions, 2019, 48, 628-634.	3.3	16
68	Effect of Mo Species on the Selective Oxidation of <i>n</i> â€Butane to Maleic Anhydride over Moâ€Promoted VPP. ChemistrySelect, 2019, 4, 662-669.	1.5	9
69	Shape-control of CeF ₃ nanocrystals by doping polyoxometalates: syntheses, characterization and tunable photoluminescence. Chemical Communications, 2019, 55, 1619-1622.	4.1	9
70	Well-tuned white-light-emitting behaviours in multicenter-Ln polyoxometalate derivatives: A photoluminescence property and energy transfer pathway study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117294.	3.9	17
71	Preparation, characterization and electrocatalysis performance of a trimeric ruthenium-substituted isopolytungstate. Dalton Transactions, 2019, 48, 10327-10336.	3.3	9
72	Recent advances in transition-metal-containing Keggin-type polyoxometalate-based coordination polymers. Coordination Chemistry Reviews, 2019, 392, 49-80.	18.8	133

#	Article	IF	Citations
73	Cobalt- and Nickel-Containing Germanotungstates Based on Open Wells–Dawson Structure: Synthesis and Characterization of Tetrameric Anion. Inorganic Chemistry, 2019, 58, 6000-6007.	4.0	9
74	Ln(iii)-Containing polyoxomolybdates based on \hat{l}^2 -{Mo8O28}: microwave synthesis and optical and magnetic properties. CrystEngComm, 2019, 21, 3627-3633.	2.6	5
75	A Stable Polyoxometalate-Based Metal–Organic Framework as Highly Efficient Heterogeneous Catalyst for Oxidation of Alcohols. Inorganic Chemistry, 2019, 58, 4945-4953.	4.0	59
76	Utilizing the adaptive precursor [As ₂ W ₁₉ O ₆₇ (H ₂ O)] ^{14–} to support three hexanuclear lanthanoid-based tungstoarsenate dimers. Dalton Transactions, 2019, 48, 2813-2821.	3.3	18
77	Aerobic oxidative cleavage of 1,2-diols catalyzed by atomic-scale cobalt-based heterogeneous catalyst. Communications Chemistry, 2019, 2, .	4.5	45
78	A new phosphotungstate-supported rhenium carbonyl derivative: synthesis, characterization and catalytic selective oxidation of thiophenes. CrystEngComm, 2019, 21, 7322-7328.	2.6	3
79	An unprecedented [{Fe5O5(OH)2(OAc)2}2{W2O2(OH)}] cluster sandwiched in the tetravacant tungstophosphate. Dalton Transactions, 2019, 48, 16857-16860.	3.3	2
80	Two synthetic routes generate two isopolyoxoniobates based on {Nb ₁₆ } and {Nb ₂₀ }. Dalton Transactions, 2019, 48, 17709-17712.	3.3	18
81	Polyoxotungstate Cluster Species Connected by Glutamic Acid and Europium. Inorganic Chemistry, 2019, 58, 57-60.	4.0	14
82	Two Novel Heteropolyniobates Using TeO ₃ ^{2â€"} as Template and Linker. Inorganic Chemistry, 2019, 58, 27-30.	4.0	23
83	Assembly of two hybrid organic-inorganic hexatantalate. Inorganic Chemistry Communication, 2019, 101, 6-10.	3.9	11
84	Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications. Coordination Chemistry Reviews, 2019, 378, 281-309.	18.8	205
85	An isotetramolybdate-supported rhenium carbonyl derivative: synthesis, characterization, and use as a catalyst for sulfoxidation. Dalton Transactions, 2018, 47, 5279-5285.	3.3	23
86	Cuâ€Catalyzed Aerobic Oxidation of Alcohols with a Multiâ€Functional NMIâ€TEMPO. ChemistrySelect, 2018, 3, 3386-3390.	1.5	7
87	Immobilization of carbonyl rhenium tripods on the surface of a trinickel-substituted Dawson-type polyoxotungstate. Dalton Transactions, 2018, 47, 6288-6292.	3.3	11
88	A helical chain-like organic–inorganic hybrid arsenotungstate with color-tunable photoluminescence. Dalton Transactions, 2018, 47, 1958-1965.	3.3	40
89	Organophosphonate-Functionalized Lanthanopolyoxomolybdate: Synthesis, Characterization, Magnetism, Luminescence, and Catalysis of H ₂ O ₂ -Based Thioether Oxidation. Inorganic Chemistry, 2018, 57, 1796-1805.	4.0	42
90	A series of organic-inorganic hybrid silicotungstate microtubes: Tunable syntheses and spectroscopic properties. Materials Chemistry and Physics, 2018, 207, 186-193.	4.0	6

#	Article	IF	Citations
91	A high-nuclearity isopolyoxotungstate based manganese cluster: one-pot synthesis and step-by-step assembly. Chemical Communications, 2018, 54, 5458-5461.	4.1	21
92	Synthesis, characterization and catalytic oxidation of organosilanes with a novel multilayer polyoxomolybdate containing mixed-valence antimony. Molecular Catalysis, 2018, 452, 167-174.	2.0	11
93	Photochromic behavior of a new polyoxomolybdate/alkylamine composite in solid state. Journal of Materials Science, 2018, 53, 3078-3086.	3.7	8
94	Facile CO2 Cycloaddition to Epoxides by Using a Tetracarbonyl Metal Selenotungstate Derivate [{Mn(CO)3}4(Se2W11O43)]8–. Inorganic Chemistry, 2018, 57, 14632-14643.	4.0	28
95	A Novel Tetrameric Polyoxotantalate Aggregate: {Co ₈ Ta ₂₄ } Featuring a High-Nuclearity Co ₈ Cluster. Inorganic Chemistry, 2018, 57, 12471-12474.	4.0	23
96	Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: from the discrete [V ₄ O ₁₂] ^{4â^'} and [V ₁₀ O ₂₈] ^{6â^'} anions to the anionic [V ₆ O ₁₇] _n ^{4nâ^'} coordination polymer. CrystEngComm, 2018, 20, 6273-6279.	2.6	17
97	Nitrogen-Doped Carbon-Modified Cobalt-Nanoparticle-Catalyzed Oxidative Cleavage of Lignin Î ² -O-4 Model Compounds under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 14188-14196.	6.7	55
98	Elucidating white light emissions in Tm ³⁺ /Dy ³⁺ codoped polyoxometalates: a color tuning and energy transfer mechanism study. Dalton Transactions, 2018, 47, 13949-13956.	3.3	32
99	A comprehensive approach providing a new synthetic route for bimetallic electrocatalysts $\langle i \rangle \langle i \rangle$	3.3	4
100	A bimetallic oxide Fe1.89Mo4.11O7 electrocatalyst with highly efficient hydrogen evolution reaction activity in alkaline and acidic media. Chemical Science, 2018, 9, 5640-5645.	7.4	38
101	Synthesis and characterization of a Sb($\langle scp \rangle v \langle scp \rangle$)-containing polyoxomolybdate serving as a catalyst for sulfoxidation. Dalton Transactions, 2018, 47, 8070-8077.	3.3	13
102	Polyoxoniobates as a superior Lewis base efficiently catalyzed Knoevenagel condensation. Molecular Catalysis, 2018, 453, 93-99.	2.0	55
103	A Crownâ€Shaped Ruâ€Substituted Arsenotungstate for Selective Oxidation of Sulfides with Hydrogen Peroxide. Chemistry - A European Journal, 2018, 24, 11059-11066.	3.3	50
104	A new dimeric polyoxometalate derivate assembled by divacant Dawson {P2W16} units and isosceles triangle {Ce3} cluster. Inorganic Chemistry Communication, 2018, 95, 154-157.	3.9	10
105	Synthesis and spectroscopic properties of silver-fluorescein co-doped phosphotungstate hollow spheres. Dalton Transactions, 2018, 47, 7730-7738.	3.3	6
106	Construction of a new binding manner in carboxylic acid-functionalized phosphomolybdates. Dalton Transactions, 2018, 47, 7949-7955.	3.3	10
107	Polyoxotungstates incorporated organophosphonate and nickel: synthesis, characterization and efficient catalysis for epoxidation of allylic alcohols. Dalton Transactions, 2018, 47, 13479-13486.	3.3	8
108	A Novel Ruthenium-Decorating Polyoxomolybdate Cs3Na6H[MoVI14RuIV2O50(OH)2]·24H2O: An Active Heterogeneous Oxidation Catalyst for Alcohols. Materials, 2018, 11, 178.	2.9	11

#	Article	IF	CITATIONS
109	Preparation, characterization, and catalytic performances of a pyrazine dicarboxylate-bridging rare-earth-containing polytungstoarsenate aggregate for selective oxidation of thiophenes and deep desulfurization of model fuels. Dalton Transactions, 2018, 47, 9677-9684.	3.3	14
110	Enhanced Photostability Luminescent Properties of Er ³⁺ -Doped Near-White-Emitting Dy _{<i>x</i>} Er _(1–<i>x</i>) -POM Derivatives. Inorganic Chemistry, 2018, 57, 7665-7675.	4.0	58
111	Organometallic functionalized non-classical polyoxometalates: synthesis, characterization and electrochemical properties. Dalton Transactions, 2018, 47, 9317-9323.	3.3	10
112	Two Magnetic 2D Inorganic–Organic Hybrid Framework Materials Constructed by Phosphotungstates. Journal of Cluster Science, 2017, 28, 1761-1771.	3.3	2
113	Magnetoluminescent Bifunctional Dysprosium-Based Phosphotungstates with Synthesis and Correlations between Structures and Properties. Crystal Growth and Design, 2017, 17, 1947-1956.	3.0	39
114	A luminescent polyoxoniobate lanthanide derivative {Eu ₃ (H ₂ O) ₉ [Nb ₄₈ O ₁₃₈ (H ₂ O) _{O)_{Chemical Communications, 2017, 53, 3709-3712.}}	b 4.6 ∢/sub:	>]}@sup>27
115	Assembly of niobium-phosphate cluster and in situ transition-metal-containing derivatives. CrystEngComm, 2017, 19, 2768-2774.	2.6	12
116	Discovery of Heteropolytantalate: Synthesis and Structure of Two 6-Peroxotantalo-4-phosphate Clusters. Inorganic Chemistry, 2017, 56, 5537-5543.	4.0	33
117	Polyoxomolybdates functionalized by a flexible carboxylic acid and their photochromic properties. Journal of Physics and Chemistry of Solids, 2017, 110, 161-166.	4.0	7
118	A Ni-containing decaniobate incorporating organic ligands: synthesis, structure, and catalysis for allylic alcohol epoxidation. RSC Advances, 2017, 7, 28696-28701.	3.6	19
119	Discovery and isolation of the trans-isomers of two 1 : 2-type lanthanide-containing monolacunary Dawson-type tungstophosphates: [Lnlll(α2-P2W17O61)2]17â^' (Ln = La, Ce). Dalton Transactions, 2017, 46, 5398-5405.	3.3	15
120	Polyoxotungstate incorporating organotriphosphonate ligands and lanthanide ions: syntheses, characterization, magnetism and photoluminescence properties. Dalton Transactions, 2017, 46, 5856-5863.	3.3	20
121	{Fe ₃ Nb ₂₅ } cluster based on an Fe-centred Keggin unit. Dalton Transactions, 2017, 46, 1368-1371.	3.3	18
122	Four transition-metal-bridging risedronate-based polyoxomolybdates: Syntheses, structures, characterizations and magnetic properties. Synthetic Metals, 2017, 223, 19-25.	3.9	9
123	Ligand-controlled formation of covalently modified antimoniomolybdates and their photochromic properties. CrystEngComm, 2017, 19, 207-213.	2.6	19
124	An {As ₄ Cu ₄ [Cu(H ₂ 0)] ₁₂ } Cluster Incorporated within Four [Nb ₇ O ₂₂] ^{9â°¹} Units. Chemistry - A European Journal, 2017, 23, 16957-16960.	3.3	22
125	The Polyoxovanadate-Based Carboxylate Derivative K ₆ H[V ^V ₁₇ V ^{IV} ₁₂ (OH) ₄ O _{60< Synthesis, Crystal Structure, and Catalysis for Oxidation of Sulfides. Inorganic Chemistry, 2017, 56, 14053-14059.}	/sub>(00 4.0	C(CH <sub)< td=""></sub)<>
126	Organophosphonate-Bridged Polyoxometalate-Based Dysprosium(III) Single-Molecule Magnet. Inorganic Chemistry, 2017, 56, 12687-12691.	4.0	39

#	Article	IF	CITATIONS
127	Synthesis, characterization and catalytic epoxidation properties of lanthanide-stabilized peroxoisopolytungstates. Dalton Transactions, 2017, 46, 12981-12987.	3.3	9
128	Synthesis, structure, and luminescent properties of a family of lanthanide-functionalized peroxoniobiophosphates. Scientific Reports, 2017, 7, 10653.	3.3	7
129	Heterooctamolybdate-Based Clusters H ₃ [(Cp*Rh) ₄ PMo ₈ O ₃₂] and H ₅ [Na ₂ (Cp*Ir) ₄ PMo ₈ O ₃₄] and Derived Hybrid Nanomaterials with Efficient Electrocatalytic Hydrogen Evolution Reaction Activity. Inorganic	4.0	12
130	Synthesis, structure, and photocatalytic hydrogen evolution of a trimeric Nb/W addendum cluster. RSC Advances, 2017, 7, 36416-36420.	3.6	11
131	A Nanosized Glyâ€Decorated Praseodymiumâ€Stabilized Selenotungstate Cluster: Synthesis, Structure, and Oxidation Catalysis. Chemistry - an Asian Journal, 2017, 12, 2441-2446.	3.3	15
132	Assembly of TeO ₃ ^{2â€"} lons Embedded in an Nb/O Cage with Selective Decolorization of Organic Dye. Inorganic Chemistry, 2017, 56, 10119-10122.	4.0	29
133	A Monomeric Tricobalt(II)-Substituted Dawson-Type Polyoxometalate Decorated by a Metal Carbonyl Group: [P ₂ W ₁₅ O ₅₆ Co ₃ (H ₂ O) ₃ (OH) _{Inorganic Chemistry, 2017, 56, 10131-10134.}	> 3 :0/sub>1	Mn(CO) <su< td=""></su<>
134	Two New Sandwich-Type Polyoxomolybdates Functionalized with Diphosphonates: Efficient and Selective Oxidation of Sulfides to Sulfones. Materials, 2017, 10, 1173.	2.9	9
135	Two New Tetravacant Organometallic Keggin-Type Heteropolyoxomolybdates-Supported Manganese Carbonyl Derivatives. Molecules, 2017, 22, 1351.	3.8	7
136	Bioinspired aerobic oxidation of alcohols with a bifunctional ligand based on bipyridine and TEMPO. RSC Advances, 2016, 6, 35008-35013.	3.6	16
137	Magnetic double-tartaric bridging mono-lanthanide substituted phosphotungstates with photochromic and switchable luminescence properties. Journal of Materials Chemistry C, 2016, 4, 5424-5433.	5.5	80
138	Structure and magnetic property of a cubane-type Ni-substituted polyoxotungstate based on trivacant Dawson-type unit. Inorganic Chemistry Communication, 2016, 68, 72-75.	3.9	4
139	Ni III -embedded polyoxovanadate: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds, 2016, 686, 1032-1036.	5.5	12
140	Unprecedented {Fe ₁₄ }/{Fe ₁₀ } Polyoxotungstateâ€Based Nanoclusters with Efficient Photocatalytic H ₂ Evolution Activity: Synthesis, Structure, Magnetism, and Electrochemistry. Chemistry - A European Journal, 2016, 22, 10983-10989.	3.3	33
141	Insight into the reactivity of in situ formed {(NbO ₂) ₃ SiW ₉ }: synthesis, structure, and solution properties of a trimeric polytungstosilicate trapping a {MnNb ₉ } core. Dalton Transactions, 2016, 45, 15236-15241.	3.3	16
142	The {Ni ₁₀ Nb ₃₂ } aggregate: a perspective on isopolyniobates as ligands. Dalton Transactions, 2016, 45, 16173-16176.	3.3	16
143	Synthesis and characterization of a series of novel polyoxometalate-supported carbonyl manganese derivatives. RSC Advances, 2016, 6, 108335-108342.	3.6	14
144	Isopentatungstate-supported metal carbonyl derivative: synthesis, characterization, and catalytic properties for alkene epoxidation. Dalton Transactions, 2016, 45, 6726-6731.	3.3	26

#	Article	IF	CITATIONS
145	A new organic-inorganic hybrid tetrameric polyoxometalate assembled by monovacant Dawson [î±2-P2W17O61]10â^' and trivalent cerium cations. Inorganic Chemistry Communication, 2016, 67, 103-106.	3.9	19
146	Coordination-Driven Self-Assembly of a 2D Graphite-Like Framework Constructed from High-Nuclear Ce ₁₀ Cluster Encapsulated Polyoxotungstates. Inorganic Chemistry, 2016, 55, 918-924.	4.0	78
147	Synthesis and characterization of organotriphosphonate-functionalized TM-containing polyoxotungstates. RSC Advances, 2015, 5, 106077-106082.	3.6	6
148	A {Nb ₆ P ₂ W ₁₂ }â€Based Hexameric Manganese Cluster with Singleâ€Molecule Magnet Properties. Chemistry - A European Journal, 2015, 21, 17683-17690.	3.3	43
149	Double-malate bridging tri-lanthanoid cluster encapsulated arsenotungstates: syntheses, structures, luminescence and magnetic properties. Dalton Transactions, 2015, 44, 11514-11523.	3.3	69
150	Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nature Communications, 2015, 6, 10007.	12.8	240
151	Synthesis and magnetic properties of tartrate-bridging rare-earth-containing polytungstoarsenate aggregates from an adaptive precursor [As ₂ W ₁₉ O ₆₇ (H ₂ O)] ^{14â^²} . Dalton Transactions, 2015, 44, 733-738.	3.3	36
152	Polyoxotungstate Incorporating Organotriphosphonate Ligands: Synthesis, Characterization, and Catalytic for Alkene Epoxidation. Inorganic Chemistry, 2015, 54, 406-408.	4.0	35
153	A novel transition-metal-linked hexaniobate cluster with photocatalytic H2 evolution activity. Inorganic Chemistry Communication, 2015, 54, 19-20.	3.9	21
154	Organic–inorganic hybrid rare earth complexes based on polymolybdates with intrinsic photosensitive properties. Dalton Transactions, 2015, 44, 4679-4682.	3.3	17
155	Synthesis, crystal structure, and properties of a 1-D terbium-substituted monolacunary Keggin-type polyoxotungstate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 138, 579-584.	3.9	12
156	Two new members of the niobium-substituted polytungstophosphate family based on hexalacunary [H2P2W12O48]12â^' building blocks. Inorganic Chemistry Frontiers, 2015, 2, 254-262.	6.0	34
157	A CO ₃ ^{2â^'} -containing, dimanganese-substituted silicotungstate trimer, K ₉ [H ₁₄ {SiW ₁₀ Mn ^{II} Mn ^{III} O ₃₈ } <sub 13469-13472.<="" 2015,="" 44,="" dalton="" td="" transactions,=""><td>:833x/sub></td><td>(©O<sub)< td=""></sub)<></td></sub>	:833x/sub>	(© O <sub)< td=""></sub)<>
158	Controllable assembly of multicarboxylic acids functionalized heteropolyoxomolybdates and allochroic properties. Journal of Materials Chemistry C, 2015, 3, 4632-4639.	5.5	40
159	A {Co ₄ O ₄ } Cubane Incorporated within a Polyoxoniobate Cluster. Chemistry - A European Journal, 2015, 21, 8380-8383.	3.3	49
160	A multi-component polyoxometalate and its catalytic performance for CO ₂ cycloaddition reactions. Dalton Transactions, 2015, 44, 10152-10155.	3.3	23
161	Synthesis, crystal structure and characterization of trivacant-Keggin-polyoxometalate-based carbonyl manganese derivative. Inorganic Chemistry Communication, 2015, 56, 45-47.	3.9	11
162	Generation of Large Polynuclear Rare Earth Metal-Containing Organic–Inorganic Polytungstoarsenate Aggregates. Crystal Growth and Design, 2015, 15, 2057-2063.	3.0	43

#	Article	IF	CITATIONS
163	Controlled assembly of hybrid architectures based on carboxylic acid ligands and [(O3PCH2PO3)Mo6O22]12â°. RSC Advances, 2015, 5, 31392-31398.	3.6	10
164	Grafting transition metal–organophosphonate fragments onto heteropolyoxomolybdate: activity in photocatalysis. Dalton Transactions, 2015, 44, 17544-17550.	3.3	19
165	A nona-vacant Keggin-type tricarbonyl rhenium derivative {[PMo ₃ O ₁₆][Re(CO) ₃] ₄ } ^{5â^'} and its catalytic performance for CO ₂ cycloaddition reactions. RSC Advances, 2015, 5, 69006-69009.	3.6	13
166	Merging of the photocatalysis and copper catalysis in metal–organic frameworks for oxidative C–C bond formation. Chemical Science, 2015, 6, 1035-1042.	7.4	126
167	Construction of organic–inorganic hybrid molybdophosphonate clusters with copper–bipyridine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 131, 484-489.	3.9	3
168	Tetradecacobalt(II)â€Containing 36â€Niobate [Co ₁₄ (OH) ₁₆ (H ₂ O) ₈ Nb ₃₆ O ₁₀₆]		

#	Article	IF	CITATIONS
181	A highly selective fluorescent probe for the detection of palladium(II) ion in cells and aqueous media. Mikrochimica Acta, 2013, 180, 211-217.	5.0	34
182	Syntheses, characterization and magnetic properties of two novel inorganic–organic tungstoferrites, [FeIII4(H2O)2(B-α-FeIIIW9O34)2]10â°. Journal of Solid State Chemistry, 2013, 198, 18-23.	2.9	11
183	A novel sandwich-type tungstoarsenate containing a cagelike {Ca ₆ } cluster with a water molecule enwrapped. Dalton Transactions, 2013, 42, 874-878.	3.3	15
184	Controlled Assembly of Inorganic–Organic Frameworks Based on [SeMo ₆ O ₂₁] ^{4–} Polyanion. Inorganic Chemistry, 2013, 52, 14034-14039.	4.0	33
185	Carboxylate-Functionalized Phosphomolybdates: Ligand-Directed Conformations. Inorganic Chemistry, 2013, 52, 8987-8992.	4.0	51
186	Designing a new organic-inorganic arsenomolybdate by modification of traditional Keggin-type building fragment. Journal of Coordination Chemistry, 2013, 66, 725-736.	2.2	6
187	Self-assembly of two ring-shaped hexanuclear Mo(vi) clusters. CrystEngComm, 2013, 15, 5452.	2.6	11
188	An unprecedented trimer based on monovacant Dawson anion: [(α2-P2W17O61)Ln(H2O)4]321â^' (Ln = LallI,)	Tj <u>ET</u> Qq0 (OorgBT/Ove
189	Octamolybdate-supported tricarbonyl metal derivatives: [{H2Mo8O30}{M(CO)3}2]8a^' (M = Mnl and Rel). Dalton Transactions, 2013, 42, 2696.	3.3	18
190	Nona-copper(ii)-containing 18-tungsto-8-arsenate(iii) exhibits antitumor activity. Chemical Communications, 2013, 49, 5189.	4.1	73
191	pH-dependent assembly of saturated to dilacunary Keggin-based silicotungstate: [Cu(en) ₂ (H ₂ O)][H ₂ en]{ <i>i³</i> -SiW ₁₀ O ₃₆ [Journal of Coordination Chemistry, 2013, 66, 1330-1339.	Cu(æ ½) <su< td=""><td>ıb>2(H</td></su<>	ıb> 2 (H
192	An organic–inorganic hybrid Dy(III)-containing polyoxomolybdate based on functionalized diphosphonate ligands. Inorganic Chemistry Communication, 2013, 35, 5-8.	3.9	9
193	Lanthanide-containing peroxoisopolytungstate with tetrahedral WO42â^' template core, [Ln4(WO4)(H2O)16{W7O22(O2)2}4]14â^'. CrystEngComm, 2013, 15, 4597.	2.6	12
194	A Series of Arsenotungstates Based on the [HAs ₂ W ₈ O ₃₁] ^{7â€"} Building Block: Syntheses by Control of the Reaction Process. Crystal Growth and Design, 2013, 13, 2982-2989.	3.0	15
195	Assembly of Dimeric and Tetrameric Complexes of Polyoxomolybdobisphosphonates Built from [(Mo3O8){O3PC(O)(CH2-3-C5NH5)PO3}]2– Subunits. Crystal Growth and Design, 2013, 13, 2540-2547.	3.0	30
196	Combination between [B-α-SiW ₉ O ₃₄] unit and triangular inorganic Ni ₆ core under hydrothermal conditions: from monomer to rare dimer with malposed dodeca-nickel centers. Dalton Transactions, 2013, 42, 364-367.	3.3	16
197	Four Members of the Sandwich-Type Polytungstophosphate Family Based on Pentalacunary [HPW7O28]8-Building Blocks. European Journal of Inorganic Chemistry, 2013, 2013, 1672-1680.	2.0	9
198	Synthesis and characterization of a coplanar-shaped hexa-Cull sandwiched arsenotungstate. Journal of Coordination Chemistry, 2012, 65, 1740-1749.	2,2	5

#	Article	IF	CITATIONS
199	A Novel Sodium Germanomolybdate Constructed from [H2Ge2Mo6O26]6â^ Polyoxoanions and [Na6(H2O)12]6+ Clusters. Chemistry Letters, 2012, 41, 847-849.	1.3	1
200	Novel polyoxometalate hybrids consisting of copper–lanthanide heterometallic/lanthanide germanotungstate fragments. Dalton Transactions, 2012, 41, 10740.	3.3	71
201	2-D and 3-D organic–inorganic hybrid lanthanide molybdates linking by pyridine-2,5-dicarboxylate. CrystEngComm, 2012, 14, 8677.	2.6	15
202	Novel 1-D double-chain organic–inorganic hybrid polyoxotungstates constructed from dimeric copper–lanthanide heterometallic silicotungstate units. CrystEngComm, 2012, 14, 7981.	2.6	38
203	Two types of oxalate-bridging rare-earth-substituted Keggin-type phosphotungstates $\{[(\hat{i}\pm PW11039)RE(H2O)]2(C2O4)\}10\hat{a}^{2}\}$ and $\{(\hat{i}\pm -x-PW10O38)RE2(C2O4)(H2O)2\}3\hat{a}^{2}\}$. Dalton Transactions, 201 3764.	.2,41,	65
204	Three-dimensional lanthanide polyoxometalate organic complexes: correlation of structure with properties. CrystEngComm, 2012, 14, 3205.	2.6	54
205	Four di-Cull-substituted sandwich-type germanomolybdates obtained under different reaction conditions: from zero-dimensional to two-dimensional structure. Dalton Transactions, 2012, 41, 5235.	3.3	7
206	Syntheses, crystal structures, and magnetic properties of the banana-shaped tungstophosphates: [M ₆ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂ (PW ₉ O ₃₄)22(PW ₉ 34)363-3371.	60	<şub>26
207	Organic–Inorganic Hybrids Based on Monovacant Keggin-type Silicotungstates and 3d-4f Heterometals. Crystal Growth and Design, 2012, 12, 1263-1272.	3.0	71
208	Two novel trivacant Keggin-type polytungstates supported manganese carbonyl derivatives synthesized by degradation of metastable [\hat{I}^3 -XW10O36]8 \hat{a}^2 (X = GeIV, SiIV). Dalton Transactions, 2012, 41, 5832.	3.3	27
209	Two organic–inorganic hybrid 1-D and 3-D polyoxotungstates constructed from hexa-Cull substituted sandwich-type arsenotungstate units. CrystEngComm, 2012, 14, 2797.	2.6	52
210	Temperature-controlled assembly of a series of inorganic–organic hybrid arsenomolybdates. CrystEngComm, 2012, 14, 4060.	2.6	58
211	A novel diniobium-inserted sandwich-type polyoxometalate K6H3[Nb2K(H2O)4(A-α-SiW9O34)2]·23H2O constructed from two trivacant Keggin [A-α-SiW9O34]10Ⱂ moieties linked via a V-shaped {Nb2K} group. Inorganic Chemistry Communication, 2012, 17, 75-78.	3.9	17
212	Rareâ€Earth–Transitionâ€Metal Organic–Inorganic Hybrids Based on Kegginâ€type Polyoxometalates and Pyrazineâ€2,3â€dicarboxylate. Chemistry - an Asian Journal, 2012, 7, 966-974.	3.3	55
213	Organodiphosphonateâ€Functionalized Lanthanopolyoxomolybdate Cages. Chemistry - A European Journal, 2012, 18, 6759-6762.	3.3	56
214	The first two-dimensional organic–inorganic hybrid constructed by oxalate-bridging scandium-substituted Keggin-type silicotungstate and [Cu(en)2]2+ coordination cations. Inorganic Chemistry Communication, 2012, 20, 191-195.	3.9	16
215	Manganese carbonyl derivatives based on Keggin- or Dawson-type polyoxoanions. Journal of Molecular Structure, 2012, 1019, 61-67.	3.6	15

Novel octatung state-supported tricarbonyl metal derivatives: {[H2W8O30][M(CO)3]2}8 a^{``} (M = MnI and) Tj ETQqQQQ 0 rgBT_27 Overlock

216

#	Article	IF	CITATIONS
217	Zero- or One-Dimensional Organicâ^Inorganic Hybrid Polyoxoniobates Constructed from Decaniobate Units and Transition-Metal Complexes. Crystal Growth and Design, 2011, 11, 1253-1261.	3.0	51
218	Three Novel Inorganicâ Organic Hybrid Arsenomolybdate Architectures Constructed from Monocapped Trivacant [As ^{III} As ^V Mo ₉ O ₃₄] ^{6â '^{Fragments with [Cu(L)₂]²⁺ Linkers: From Dimer to Two-Dimensional Framework. Crystal}}	3.0	37
219	Growth and Design, 2011, 11, 436-444. Three Transition-Metal Substituted Polyoxotungstates Containing Keggin Fragments: From Trimer to One-Dimensional Chain to Two-Dimensional Sheet. Crystal Growth and Design, 2011, 11, 1913-1923.	3.0	68
220	Two 1-D multi-nickel substituted arsenotungstate aggregates. CrystEngComm, 2011, 13, 3462.	2.6	51
221	Two 3d–4f heterometallic monovacant Keggin phosphotungstate derivatives. Journal of Coordination Chemistry, 2011, 64, 400-412.	2.2	24
222	Synthesis, structure and magnetism of a S-shaped multi-iron substituted arsenotung state containing a trivacant Keggin [\hat{l} ±-AsVW9O34]9 \hat{a} ° and a hexavacant Keggin [\hat{l} ±-AsVW6O26]11 \hat{a} ° fragments. Journal of Solid State Chemistry, 2011, 184, 2756-2761.	2.9	20
223	A new organic-inorganic composite sandwich-type phosphotungstate: Synthesis, crystal structure and properties of [Ni(phen)3]2H6[Ni4(H2O)2(B-α-PW9O34)2] · 4H2O. Russian Journal of Inorganic Chemistry, 2011, 56, 1075-1079.	1.3	0
224	A Series of 3D Rareâ€Earthâ€Metal–Organic Frameworks with Isolated Guest Keggin Silicotungstate Fragments as Anion Templates. European Journal of Inorganic Chemistry, 2011, 2011, 5397-5404.	2.0	17
225	Synthesis, structure and magnetism of a 2-D organic–inorganic hybrid tetra-Coll-substituted sandwich-type Keggin germanotungstate: {[Co(dap)2(H2O)]2[Co(dap)2]2[Co4(Hdap)2(B-α-HGeW9O34)2]}·7H2O. Inorganic Chemistry Communication, 2011, 14, 1052-1056.	3.9	28
226	Synthesis, structure, and properties of a 1-D cerium based on monovacant Keggin-type polyoxotungstate. Journal of Coordination Chemistry, 2011, 64, 2178-2185.	2.2	13
227	A new 1-D chain-like organic–inorganic hybrid phosphotungstate constructed by sandwich-type clusters and [Ni(en) ₂] ²⁺ linkers. Journal of Coordination Chemistry, 2011, 64, 2497-2505.	2.2	6
228	A Novel Organic–Inorganic Hybrid Polyoxoniobate Constructed from {[Cu(en)(H2O)][HNb6O19]}5â^' Polyoxoanions and Methane-like {K4Na}5+ Cations. Journal of Cluster Science, 2010, 21, 121-131.	3.3	9
229	One-pot syntheses, structures and properties of two novel 1-D copper complexes: [Cull2(Hbpdc)2Cl2] $2\hat{A}$ -2H2O and Cul(H2bpdc)Cl (H2bpdc = 2, $2\hat{a}$ \in 2-bipyridyl-5, $5\hat{a}$ \in 2-dicarboxylic acid). Inorganic Chemistry Communication, 2010, 13, 822-827.	3.9	30
230	Synthesis and Structural Characterization of a New Two-dimensional Organic-Inorganic Hybrid Molybdoarsenate: [Cu(en)2]2[(CuO6)Mo6O18(As3O3)2]. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 163-167.	0.7	6
231	Polyoxotungstate clusters: syntheses, characterization, and crystal structures of [Cull(1,3-dap)2]2[Cull(1,3-dap)]2H[î±-PW10.5 O40] and [Cul(phen)2]3[î±-PW12O40]. Journal of Coordination Chemistry, 2010, 63, 1463-1472.	2.2	8
232	A new organic–inorganic hybrid polyoxoniobate based on Lindqvist-type anion and nickel complex. Journal of Coordination Chemistry, 2010, 63, 3753-3763.	2.2	14
233	Syntheses, structures, and properties of two new hybrid Dawson-based polyoxotungstates [Mn(2,2′-bipy) ₃]H ₂ [Mn(2,2′-bipy) ₂][P ₂ W ₁₈ O ₆₂] and	2.2	6
234	A 3H×sub>2 c/sub>0. Journal of Coordination Chemistry, 2010, 63, 1044-1055. A 3D organic–inorganic network constructed from an Anderson-type polyoxometalate anion, a copper complex and a tetrameric [Na4(H2O)14]4+ cluster,. CrystEngComm, 2010, 12, 1718.	2.6	44

#	Article	IF	CITATIONS
235	Two-Dimensional Polyoxoniobates Constructed from Lindqvist-Type Hexaniobates Functionalized by Mixed Ligands. Crystal Growth and Design, 2010, 10, 3110-3119.	3.0	43
236	Hydrothermal syntheses and structural characterization of two sandwich-type arsenotungstates. Journal of Coordination Chemistry, 2010, 63, 2042-2055.	2.2	12
237	Hydrothermal syntheses and structural characterization of two organic–inorganic hybrid compounds based on Lindqvist polyanions. Journal of Coordination Chemistry, 2009, 62, 3117-3125.	2.2	9
238	Synthesis and characterization of a new transition-metal complex of the Lindqvist polyanion Na[Cu(1,) Tj ETQq0 0	0 rgBT /C	verlock 10
239	Magnetic Properties of Tetra-Transition-Metal Substituted Weakley-Type Germanotungstates. Journal of Cluster Science, 2009, 20, 671-681.	3.3	3
240	Hydrothermal synthesis and crystal structure of a tungstovanadate: [4,4′-bipyH2][4,4′-bipyH]2[VW12O40] · 4,4′-bipy · 7.5H2O. Russian Journal of Inorganic Chemistry, 20 403-406.	0023; 54,	7
241	Rare Sandwich-Type Polyoxomolybdates Constructed from Di-/Tetra-Nuclear Transition-Metal Clusters and Trivacant Keggin Germanomolybdate Fragments. Inorganic Chemistry, 2009, 48, 9819-9830. Assembly Chemistry between Lanthanide Cations and Monovacant Keggin Polyoxotungstates: Two	4.0	94
242	Types of Lanthanide Substituted Phosphotungstates [{(α-PW ₁₁ O ₃₉ H)Ln(H ₂ O) ₃ } ₂] _{6â^²} and [{(α-PW ₁₁ O ₃₉)Ln(H ₂ O)(Î ₂ 2,μ-1,1)-CH ₃ COO}		122
243	Crystal Growth and Design 2009 9, 4362-4372 A novel type of heteropolyoxoanion precursors {[Ca(H2O)]6[P4M6O34]2}12â^ (M = WVI, MoVI) constructed by two [P4M6O34]12â^ subunits via a rare hexa-calcium cluster. Chemical Communications, 2009, , 2362.	4.1	42
244	Hydrothermal syntheses and crystal structures of two organic–inorganic hybrid molybdovanadates based on [V ₂ Mo ₆ (OH) ₂ O ₂₄] ^{4â^'} and [VMo ₁₂ O ₄₀] ^{3â^'} polyoxoanions. Journal of Coordination Chemistry, 2009, 62, 3754-3762.	2.2	12
245	Hydrothermal synthesis and crystal structure of a 1-D compound constructed from molybdovanadate clusters [V ₂ Mo ₆ O ₂₆] ^{6a^'} and copper complexes. Journal of Coordination Chemistry, 2009, 62, 2641-2647.	2.2	7
246	Synthesis and crystal structure of a 1D chain polyoxometalate-based complex $\{[Cul(en)2(H2O)]2\{GeW12O40[Cull(en)2]\}\ \hat{A}\cdot 2.5H2O\}$ n. Journal of Coordination Chemistry, 2009, 62, 1895-1901.	2.2	15
247	Hydrothermal synthesis and structural characterization of two inorganic–organic composite sandwich-type tungstogermanates. Journal of Coordination Chemistry, 2009, 62, 3599-3605.	2.2	7
248	A new 3D polyoxometalate based on saturated Wells–Dawson polyanions and calcium cations. Journal of Coordination Chemistry, 2008, 61, 3651-3658.	2,2	8
249	An organic-inorganic hybrid polyoxometalate based on the dodecatungstate building block: [Ni(phen)(H ₂ O) ₃ 2[Ni(H ₂ O) ₅][H ₂ Journal of Coordination Chemistry, 2008, 61, 192-201.	\⁄⊉.2 sub>1	.2x/sub>0<
250	Novel hexanuclear copper(ii)-substituted dimeric tungstogermanates. CrystEngComm, 2008, 10, 972.	2.6	35
251	Novel Tungstovanadate Wellsâ'Dawson Organicâ€"Inorganic Heteropolyoxometalate Compound: Synthesis and Crystal Structure of [Cu ₂ (2,2′-bipy) ₂ (Inic) ₂ (H ₂ O) ₂][Y(Inic) _{(Where 2.2′-bipy) = 2.2′-Bipyridine, Inic = γ-Picolinic Acid), Crystal Growth and Design, 2008, 8, 372-374.}	2 ³ (I	H ¹⁸ ub>2
252	Tetra-Transition-Metal Substituted Weakley-Type Sandwich Germanotungstates and their Derivatives Decorated by Transition-Metal Complexes. Crystal Growth and Design, 2008, 8, 3130-3133.	3.0	59

#	Article	IF	CITATIONS
253	Synthesis, structure and properties of rare earth substituted germanotungstates: $Pr/[]\pm -GeW11O39]. Journal of Coordination Chemistry, 2008, 61, 3467-3475.$	2.2	4
254	A three-dimensional heterocluster containing manganese clusters and hexanuclear sodium wheels. CrystEngComm, 2007, 9, 740.	2.6	1
255	A Novel Polyoxotungstate [Ni4(H2O)2(α-NiW9O34)2]16-Based on an Old Structure with a New Component. Crystal Growth and Design, 2007, 7, 603-605.	3.0	46
256	Giant Polyniobate Clusters Based on [Nb ₇ O ₂₂] ^{9â^3} Units Derived from a Nb ₆ O ₁₉ Precursor. Chemistry - A European Journal, 2007, 13, 8739-8748.	3.3	196
257	Synthesis, crystal structure and properties of a new organic-inorganic hybrid Dawson-like polyoxotungstate [Co(2,2′-bpy)3]2[Co(2,2′-bpy)2Cl][Co(2,2′-bpy)2]H2[SbW18O60]·4H2O. Science in Series B: Chemistry, 2007, 50, 784-789.	Cha na	6
258	Hydrothermal synthesis and crystal structure of a novel compound supported by α-Keggin units [Cu(2,2′-bipy)2]{ WVO40[Cu(2,2′-bipy)2]2}·2H2O. Journal of Coordination Chemistry, 2006, 59, 1007-10	1 ² 4. ²	10
259	Synthesis, crystal structure and properties of a neodymium(III) coordination polymer of 1D chain structure based on typical plenary Keggin cluster. Journal of Coordination Chemistry, 2006, 59, 1261-1270.	2.2	2
260	Synthesis, crystal structure and properties of a novel 1D chain organic–inorganic rare earth coordination polymer: Gd0.5H0.5{[Gd(H2O)6] [Gd(H2O)2(DMSO)] [α-SiW11O39]}·7H2O. Journal of Coordination Chemistry, 2006, 59, 1565-1573.	2.2	1
261	A Novel Organic–Inorganic Hybrid Based on Tungstoantimonate: Synthesis, Crystal Structure, and Properties of Na[{Cu(2,2′-bpy)(H2O)}2{Cu(2,2′-bpy)}2(B-α-SbW9O33)]·2H2O. Chemistry Letters, 2006, 2994-995.	3 5, 3	19
262	Synthesis, crystal structure and characterization of a 2-D network organic-inorganic hybrid polymer with [α-BW12O40]5Ⱐas building blocks. Science in China Series B: Chemistry, 2006, 49, 437-444.	0.8	8
263	Synthesis, crystal structure and properties of a new complex constructed from coordinated Dy(III) unit and the polyanion [SiMo12O40]4â^: [Dy(NMP)4(H2O)3]H[SiMo12O40]·2NMP. Journal of Coordination Chemistry, 2004, 57, 33-40.	2.2	3
264	Hydrothermal synthesis and crystal structure of a novel Metatungstate [Cu(2,2′-bipy)3]2H2[H2W12O40]·4.5H2O. Journal of Coordination Chemistry, 2004, 57, 411-416.	2.2	5
265	Preparation, electrochemistry and crystal structure of a derivative of 18-tungstophosphate with Dawson structure: K16H[Yb(α-2-P2W17O61)2]·44H2O. Journal of Molecular Structure, 2004, 692, 223-229.	3.6	29
266	Controlled assembly of polyoxometalate-based composite materials containing zero- and one-dimensional structures. New Journal of Chemistry, 2004, 28, 980.	2.8	63
267	Synthesis and Crystal Structure of K6.5H4.5 [CeK2(SiW11O39)2]Â-26H2O. Journal of Coordination Chemistry, 2003, 56, 895-901.	2.2	3
268	Synthesis, Crystal Structure and Properties of Novel Composite Complex: [La(Nmp)4(H2o)4][HsiMo12O40]·2nmp·H2o. Journal of Coordination Chemistry, 2003, 56, 1003-1012.	2.2	5