Hein Te Riele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7302865/publications.pdf Version: 2024-02-01

HEIN TE DIELE

#	Article	IF	CITATIONS
1	Pro-mutagenic effects of the gut microbiota in a Lynch syndrome mouse model. Gut Microbes, 2022, 14, 2035660.	9.8	5
2	The Widely Used Antihelmintic Drug Albendazole is a Potent Inducer of Loss of Heterozygosity. Frontiers in Pharmacology, 2021, 12, 596535.	3.5	5
3	Three-step site-directed mutagenesis screen identifies pathogenic <i>MLH1</i> variants associated with Lynch syndrome. Journal of Medical Genetics, 2020, 57, 308-315.	3.2	5
4	Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nature Communications, 2020, 11, 4287.	12.8	33
5	WAPL-Dependent Repair of Damaged DNA Replication Forks Underlies Oncogene-Induced Loss of Sister Chromatid Cohesion. Developmental Cell, 2020, 52, 683-698.e7.	7.0	36
6	The RECQL helicase prevents replication fork collapse during replication stress. Life Science Alliance, 2020, 3, e202000668.	2.8	4
7	Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells. PLoS Genetics, 2020, 16, e1009041.	3.5	0
8	Title is missing!. , 2020, 16, e1009041.		0
9	Title is missing!. , 2020, 16, e1009041.		0
10	Title is missing!. , 2020, 16, e1009041.		0
11	Title is missing!. , 2020, 16, e1009041.		0
12	Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair. Scientific Reports, 2019, 9, 768.	3.3	18
13	DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Research, 2018, 46, 2945-2955.	14.5	39
14	Double somatic mutations in mismatch repair genes are frequent in colorectal cancer after Hodgkin's lymphoma treatment. Gut, 2018, 67, 447-455.	12.1	27
15	RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation. PLoS ONE, 2018, 13, e0196979.	2.5	1
16	Loss of p53 suppresses replication-stress-induced DNA breakage in G1/S checkpoint deficient cells. ELife, 2018, 7, .	6.0	34
17	Genomic landscape of retinoblastoma in <i>Rb^{â^'/â^'}p130^{â^'/â^'}</i> mice resembles human retinoblastoma. Genes Chromosomes and Cancer, 2017, 56, 231-242.	2.8	5
18	Truncation of the MSH2 C-terminal 60 amino acids disrupts effective DNA mismatch repair and is causative for Lynch syndrome. Familial Cancer, 2017, 16, 221-229.	1.9	1

Hein Te Riele

#	Article	IF	CITATIONS
19	Suspected Lynch syndrome associated MSH6 variants: A functional assay to determine their pathogenicity. PLoS Genetics, 2017, 13, e1006765.	3.5	18
20	Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes. Scientific Reports, 2016, 6, 25264.	3.3	75
21	Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated <i>MSH2</i> DNA mismatch repair gene variants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4128-4133.	7.1	28
22	The retinoblastoma protein: multitasking to suppress tumorigenesis. Molecular and Cellular Oncology, 2015, 2, e968062.	0.7	0
23	DNA helicases FANCM and DDX11 are determinants of PARP inhibitor sensitivity. DNA Repair, 2015, 26, 54-64.	2.8	26
24	Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression. EBioMedicine, 2015, 2, 660-670.	6.1	54
25	Temozolomide Increases the Number of Mismatch Repair–Deficient Intestinal Crypts and Accelerates Tumorigenesis in a Mouse Model of Lynch Syndrome. Gastroenterology, 2014, 147, 1064-1072.e5.	1.3	28
26	Tissue-specific mismatch repair protein expression: MSH3 is higher than MSH6 in multiple mouse tissues. DNA Repair, 2013, 12, 46-52.	2.8	33
27	Functional Analysis in Mouse Embryonic Stem Cells Reveals Wild-Type Activity for Three Msh6 Variants Found in Suspected Lynch Syndrome Patients. PLoS ONE, 2013, 8, e74766.	2.5	4
28	<i>Fancf</i> â€deficient mice are prone to develop ovarian tumours. Journal of Pathology, 2012, 226, 28-39.	4.5	31
29	Transient suppression of MLH1 allows effective single-nucleotide substitution by single-stranded DNA oligonucleotides. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 715, 52-60.	1.0	14
30	Characterization of MSH2 variants by endogenous gene modification in mouse embryonic stem cells. Human Mutation, 2011, 32, 389-396.	2.5	17
31	Parameters of oligonucleotideâ€mediated gene modification in mouse ES cells. Journal of Cellular and Molecular Medicine, 2010, 14, 1657-1667.	3.6	22
32	Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes and Development, 2010, 24, 1377-1388.	5.9	107
33	Subtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage. Nucleic Acids Research, 2010, 38, 6956-6967.	14.5	27
34	Recreating Stem Cells: A Novel Entrance to the Fountain of Youth. Cell Stem Cell, 2009, 4, 279-280.	11.1	3
35	Gene Modification in Embryonic Stem Cells by Single-Stranded DNA Oligonucleotides. Methods in Molecular Biology, 2009, 530, 79-99.	0.9	8
36	Retinoblastoma Teaches a New Lesson. Cell, 2007, 131, 227-229.	28.9	3

HEIN TE RIELE

#	Article	IF	CITATIONS
37	Restriction beyond the restriction point: mitogen requirement for G2 passage. Cell Division, 2006, 1, 8.	2.4	9
38	Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells. Nucleic Acids Research, 2006, 34, e147-e147.	14.5	46
39	Mitogen requirement for cell cycle progression in the absence of pocket protein activity. Cancer Cell, 2005, 8, 455-466.	16.8	50
40	Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130. Genes and Development, 2004, 18, 2952-2962.	5.9	124
41	Msh2 deficiency does not contribute to cisplatin resistance in mouse embryonic stem cells. Oncogene, 2004, 23, 260-266.	5.9	34
42	Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Research, 2003, 31, 27e-27.	14.5	78
43	Methylation tolerance in mismatch repair proficient cells with low MSH2 protein level. Oncogene, 2002, 21, 2873-2879.	5.9	49
44	Ablation of the Retinoblastoma gene family deregulates G ₁ control causing immortalization and increased cell turnover under growth-restricting conditions. Genes and Development, 2000, 14, 3051-3064.	5.9	385
45	HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nature Genetics, 1999, 23, 359-362.	21.4	199
46	Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell, 1995, 82, 321-330.	28.9	777