

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7301408/publications.pdf Version: 2024-02-01

LIE HE

#	Article	IF	CITATIONS
1	Photosensitizer-Loaded Gold Vesicles with Strong Plasmonic Coupling Effect for Imaging-Guided Photothermal/Photodynamic Therapy. ACS Nano, 2013, 7, 5320-5329.	7.3	603
2	Self-Assembly of Inorganic Nanoparticle Vesicles and Tubules Driven by Tethered Linear Block Copolymers. Journal of the American Chemical Society, 2012, 134, 11342-11345.	6.6	286
3	Self-Assembly of Amphiphilic Plasmonic Micelle-Like Nanoparticles in Selective Solvents. Journal of the American Chemical Society, 2013, 135, 7974-7984.	6.6	251
4	Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polymer Chemistry, 2013, 4, 4601.	1.9	242
5	Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft―Nitriding. Journal of the American Chemical Society, 2016, 138, 4718-4721.	6.6	204
6	Polymer-guided assembly of inorganic nanoparticles. Chemical Society Reviews, 2020, 49, 465-508.	18.7	196
7	Photoresponsive Nanogels Based on Photocontrollable Cross-Links. Macromolecules, 2009, 42, 4845-4852.	2.2	195
8	Dynamic Coordination of Eu–Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli. Advanced Materials, 2018, 30, 1706526.	11.1	183
9	Robust Mesoporous Manganese Oxide Catalysts for Water Oxidation. ACS Catalysis, 2015, 5, 1693-1699.	5.5	178
10	Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. Soft Matter, 2011, 7, 2380.	1.2	165
11	Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging. Angewandte Chemie - International Edition, 2015, 54, 15809-15812.	7.2	161
12	Azobenzene-containing block copolymers: the interplay of light and morphology enables new functions. Soft Matter, 2009, 5, 2686.	1.2	135
13	Entropy-Driven Pattern Formation of Hybrid Vesicular Assemblies Made from Molecular and Nanoparticle Amphiphiles. Journal of the American Chemical Society, 2014, 136, 2602-2610.	6.6	126
14	Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angewandte Chemie - International Edition, 2015, 54, 2345-2350.	7.2	119
15	Hydrodynamically Driven Selfâ€Assembly of Giant Vesicles of Metal Nanoparticles for Remoteâ€Controlled Release. Angewandte Chemie - International Edition, 2013, 52, 2463-2468.	7.2	118
16	Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 4213-4221.	4.0	110
17	Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Applied Catalysis B: Environmental, 2020, 269, 118800.	10.8	108
18	Au–Carbon Electronic Interaction Mediated Selective Oxidation of Styrene. ACS Catalysis, 2017, 7, 3483-3488.	5.5	92

#	Article	IF	CITATIONS
19	Ultrathin palladium nanosheets with selectively controlled surface facets. Chemical Science, 2018, 9, 4451-4455.	3.7	89
20	A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 15834-15840.	7.2	87
21	Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chemical Communications, 2015, 51, 5951-5954.	2.2	84
22	Templated Growth of Crystalline Mesoporous Materials: From Soft/Hard Templates to Colloidal Templates. Frontiers in Chemistry, 2019, 7, 22.	1.8	82
23	Ordering of Gold Nanorods in Confined Spaces by Directed Assembly. Macromolecules, 2013, 46, 2241-2248.	2.2	81
24	Continuous Microfluidic Selfâ€Assembly of Hybrid Janus‣ike Vesicular Motors: Autonomous Propulsion and Controlled Release. Small, 2015, 11, 3762-3767.	5.2	80
25	Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Matter, 2009, 5, 308-310.	1.2	74
26	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 22563-22569.	7.2	73
27	Both Core- and Shell-Cross-Linked Nanogels: Photoinduced Size Change, Intraparticle LCST, and Interparticle UCST Thermal Behaviors. Langmuir, 2011, 27, 436-444.	1.6	72
28	A General Approach to Synthesize Asymmetric Hybrid Nanoparticles by Interfacial Reactions. Journal of the American Chemical Society, 2012, 134, 3639-3642.	6.6	72
29	An Adaptable Tough Elastomer with Moistureâ€Triggered Switchable Mechanical and Fluorescent Properties. Advanced Functional Materials, 2019, 29, 1903543.	7.8	70
30	Ultrafine Co-based Nanoparticle@Mesoporous Carbon Nanospheres toward High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 1746-1758.	4.0	69
31	Facile Synthesis of Co ₃ O ₄ @CNT with High Catalytic Activity for CO Oxidation under Moisture-Rich Conditions. ACS Applied Materials & Interfaces, 2014, 6, 11311-11317.	4.0	66
32	Ligandâ€Assisted Coâ€Assembly Approach toward Mesoporous Hybrid Catalysts of Transitionâ€Metal Oxides and Noble Metals: Photochemical Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 9061-9065.	7.2	66
33	Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today, 2021, 36, 101046.	6.2	66
34	Corona-Cross-Linked Polymer Vesicles Displaying a Large and Reversible Temperature-Responsive Volume Transition. Macromolecules, 2009, 42, 7267-7270.	2.2	64
35	Light-responsive polymer micelles, nano- and microgels based on the reversible photodimerization of coumarin. Dyes and Pigments, 2011, 89, 278-283.	2.0	64
36	Synthesis of Mesoporous CoS ₂ and Ni <i>_x</i> Co _{1–<i>x</i>} S ₂ with Superior Supercapacitive Performance Using a Facile Solid-Phase Sulfurization. ACS Applied Materials & Interfaces, 2017, 9, 36837-36848.	4.0	64

#	Article	IF	CITATIONS
37	Near-infrared light-responsive vesicles of Au nanoflowers. Chemical Communications, 2013, 49, 576-578.	2.2	57
38	Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO ₂ reduction: the role of the carbon support in high selectivity. Nanoscale, 2018, 10, 14678-14686.	2.8	57
39	A facile synthesis of Fe ₃ C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. Nanoscale, 2016, 8, 5441-5445.	2.8	53
40	Gram-Scale Synthesis and Kinetic Study of Bright Carbon Dots from Citric Acid and <i>Citrus japonica</i> via a Microwave-Assisted Method. ACS Omega, 2017, 2, 5196-5208.	1.6	52
41	Vesicular Self-Assembly of Colloidal Amphiphiles in Microfluidics. ACS Applied Materials & Interfaces, 2013, 5, 9746-9751.	4.0	51
42	Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications. Nanoscale, 2013, 5, 5151.	2.8	50
43	Engineering Surface Ligands of Noble Metal Nanocatalysts in Tuning the Product Selectivity. Catalysts, 2017, 7, 44.	1.6	50
44	One-pot facile synthesis of Janus particles with tailored shape and functionality. Chemical Communications, 2011, 47, 12450.	2.2	49
45	Synthesis and Self-Assembly of Amphiphilic Hybrid Nano Building Blocks via Self-Collapse of Polymer Single Chains. Macromolecules, 2014, 47, 5932-5941.	2.2	49
46	Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching. Journal of the American Chemical Society, 2016, 138, 6332-6335.	6.6	49
47	Intercalating MnO ₂ Nanosheets With Transition Metal Cations to Enhance Oxygen Evolution. ChemCatChem, 2019, 11, 1689-1700.	1.8	49
48	Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals. Journal of the American Chemical Society, 2019, 141, 6013-6021.	6.6	49
49	The effect of molecular weight of polymer matrix on properties of polymer-dispersed liquid crystals. European Polymer Journal, 2007, 43, 2745-2749.	2.6	48
50	Wetâ€Chemical Synthesis of Amphiphilic Rodlike Silica Particles and their Molecular Mimetic Assembly in Selective Solvents. Angewandte Chemie - International Edition, 2012, 51, 3628-3633.	7.2	45
51	Surface Basicity of Metal@TiO ₂ to Enhance Photocatalytic Efficiency for CO ₂ Reduction. ACS Applied Materials & Interfaces, 2021, 13, 38595-38603.	4.0	45
52	Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation. Electrochimica Acta, 2018, 269, 441-451.	2.6	41
53	Unconventional structural and morphological transitions of nanosheets, nanoflakes and nanorods of AuNP@MnO ₂ . Journal of Materials Chemistry A, 2016, 4, 6447-6455.	5.2	39
54	Single Chain Polymeric Nanoparticles to Promote Selective Hydroxylation Reactions of Phenol Catalyzed by Copper. ACS Macro Letters, 2017, 6, 652-656.	2.3	38

#	Article	IF	CITATIONS
55	Template-free Synthesis of Mesoporous and Crystalline Transition Metal Oxide Nanoplates with Abundant Surface Defects. Matter, 2020, 2, 1244-1259.	5.0	38
56	RAFT Copolymerization as a means to enhance the electroâ€optical performance of polymer dispersed liquid crystal films. Journal of Polymer Science Part A, 2007, 45, 4144-4149.	2.5	35
57	How can photoisomerization of azobenzene induce a large cloud point temperature shift of PNIPAM?. Polymer Chemistry, 2014, 5, 5403-5411.	1.9	34
58	pH-programmable self-assembly of plasmonic nanoparticles: hydrophobic interaction versus electrostatic repulsion. Nanoscale, 2015, 7, 956-964.	2.8	33
59	Synthetic Polymers To Promote Cooperative Cu Activity for O ₂ Activation: <i>Poly vs Mono</i> . Journal of the American Chemical Society, 2019, 141, 4252-4256.	6.6	32
60	Metals in polymers: hybridization enables new functions. Journal of Materials Chemistry C, 2020, 8, 15956-15980.	2.7	32
61	Modification of electro-optical properties of polymer dispersed liquid crystal films by iniferter polymerization. European Polymer Journal, 2008, 44, 952-958.	2.6	31
62	Surface Engineering of Spherical Metal Nanoparticles with Polymers toward Selective Asymmetric Synthesis of Nanobowls and Janusâ€īype Dimers. Small, 2017, 13, 1700091.	5.2	31
63	Colloidal Amphiphile-Templated Growth of Highly Crystalline Mesoporous Nonsiliceous Oxides. Chemistry of Materials, 2015, 27, 6173-6176.	3.2	30
64	Ultrafine and Ligandâ€Free Precious Metal (Ru, Ag, Au, Rh and Pd) Nanoclusters Supported on Phosphorusâ€Đoped Carbon. Chemistry - A European Journal, 2018, 24, 2565-2569.	1.7	30
65	Facile synthesis of functional Au nanopatches and nanocups. Chemical Communications, 2012, 48, 7344.	2.2	29
66	Ultrasound assisted interfacial synthesis of gold nanocones. Chemical Communications, 2013, 49, 987-989.	2.2	29
67	A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO 2 Reduction. Angewandte Chemie, 2019, 131, 15981-15987.	1.6	29
68	Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices. Small, 2016, 12, 499-505.	5.2	28
69	Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angewandte Chemie, 2015, 127, 2375-2380.	1.6	27
70	Self-Assembly of Quantum Dot–Gold Heterodimer Nanocrystals with Orientational Order. Nano Letters, 2018, 18, 5049-5056.	4.5	25
71	What is next in polymer-grafted plasmonic nanoparticles?. Giant, 2020, 4, 100033.	2.5	25
72	Amphiphilic Hybrid Nano Building Blocks with Surfactant-Mimicking Structures. ACS Macro Letters, 2015, 4, 736-740.	2.3	24

#	Article	IF	CITATIONS
73	Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks. Nanoscale, 2017, 9, 6380-6390.	2.8	24
74	N-Heterocyclic carbene-ended polymers as surface ligands of plasmonic metal nanoparticles. Journal of Materials Chemistry C, 2020, 8, 2280-2288.	2.7	24
75	Highly Crystalline Mesoporous Titania Loaded with Monodispersed Gold Nanoparticles: Controllable Metal–Support Interaction in Porous Materials. ACS Applied Materials & Interfaces, 2020, 12, 9617-9627.	4.0	24
76	"Enzymatic―Photoreduction of Carbon Dioxide using Polymeric Metallofoldamers Containing Nickel–Thiolate Cofactors. ChemCatChem, 2017, 9, 1157-1162.	1.8	22
77	Do polymer ligands block the catalysis of metal nanoparticles? Unexpected importance of binding motifs in improving catalytic activity. Journal of Materials Chemistry A, 2020, 8, 15900-15908.	5.2	22
78	Adaptable Eu-containing polymeric films with dynamic control of mechanical properties in response to moisture. Soft Matter, 2020, 16, 2276-2284.	1.2	22
79	Optically Triggered Dissociation of Kinetically Stabilized Block Copolymer Vesicles in Aqueous Solution. Macromolecular Rapid Communications, 2011, 32, 972-976.	2.0	21
80	Synthesis and assembly of colloidal cuboids with tunable shape biaxiality. Nature Communications, 2018, 9, 4513.	5.8	21
81	Self-limiting growth of ligand-free ultrasmall bimetallic nanoparticles on carbon through under temperature reduction for highly efficient methanol electrooxidation and selective hydrogenation. Applied Catalysis B: Environmental, 2020, 264, 118553.	10.8	20
82	Effect of the template molecules and nonsolvent additives on the recognition property of molecular imprinted polyethersulfone particles. Journal of Applied Polymer Science, 2008, 108, 3859-3866.	1.3	19
83	Multiblock thermoplastic elastomers via one-pot thiol–ene reaction. Polymer Chemistry, 2016, 7, 4824-4832.	1.9	18
84	Immobilized Seed-Mediated Growth of Two-Dimensional Array of Metallic Nanocrystals with Asymmetric Shapes. ACS Nano, 2018, 12, 1107-1119.	7.3	18
85	Coâ€ī emplate Directed Synthesis of Gold Nanoparticles in Mesoporous Titanium Dioxide. Chemistry - A European Journal, 2018, 24, 9651-9657.	1.7	18
86	Controllable Self-Assembly of Amphiphilic Tadpole-Shaped Polymer Single-Chain Nanoparticles Prepared through Intrachain Photo-cross-linking. Langmuir, 2019, 35, 2619-2629.	1.6	18
87	A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization. European Polymer Journal, 2007, 43, 4037-4042.	2.6	17
88	Effect of the structure of gelators on electro-optical properties of liquid crystal physical gels. Journal of Colloid and Interface Science, 2007, 316, 825-830.	5.0	17
89	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie, 2020, 132, 22752-22758.	1.6	16
90	Crystalline Mesoporous Complex Oxides: Porosity ontrolled Electromagnetic Response. Advanced Functional Materials, 2020, 30, 1909491.	7.8	15

#	Article	lF	CITATIONS
91	Effect of Carbon Doping on CO ₂ â€Reduction Activity of Single Cobalt Sites in Graphitic Carbon Nitride. ChemNanoMat, 2021, 7, 1051-1056.	1.5	15
92	The Effects of Different Side Groups on the Properties of Polythiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 989-993.	1.2	13
93	Chemically modified phytoglycogen: Physicochemical characterizations and applications to encapsulate curcumin. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111829.	2.5	13
94	Electrocatalytic Oxidation of Alcohols, Tripropylamine, and DNA with Ligandâ€Free Gold Nanoclusters on Nitrided Carbon. ChemElectroChem, 2016, 3, 2100-2109.	1.7	12
95	Cross-linking of COOH-containing polymers using Ag(<scp>i</scp>)-catalyzed oxidative decarboxylation in aqueous solution. Soft Matter, 2017, 13, 5028-5037.	1.2	12
96	Symmetry-Broken Patches on Gold Nanoparticles through Deficient Ligand Exchange. ACS Macro Letters, 2021, 10, 786-790.	2.3	12
97	Gold nanocatalysts supported on carbon for electrocatalytic oxidation of organic molecules including guanines in DNA. Dalton Transactions, 2018, 47, 14139-14152.	1.6	11
98	Supported Pt Nanoparticles on Mesoporous Titania for Selective Hydrogenation of Phenylacetylene. Frontiers in Chemistry, 2020, 8, 581512.	1.8	11
99	Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 8596-8604.	1.5	11
100	Fine adjustment of network in polymer network liquid crystal film employing RAFT polymerization. Journal of Polymer Science Part A, 2008, 46, 3140-3144.	2.5	10
101	Synthesis of novel hyperbranched polyimide for liquid crystal alignment. Liquid Crystals, 2008, 35, 385-388.	0.9	10
102	Oxidative nucleation and growth of Janus-type MnO _x –Ag and MnO _x –AgI nanoparticles. Nanoscale, 2019, 11, 15147-15155.	2.8	10
103	Three-Dimensional Shape Transformation of Eu ³⁺ -Containing Polymer Films through Modulating Dynamic Eu ³⁺ -Iminodiacetate Coordination. Chemistry of Materials, 2022, 34, 2176-2186.	3.2	10
104	Control of liquid crystal droplet configuration in polymer dispersed liquid crystal with macro-iniferter polystyrene. Liquid Crystals, 2009, 36, 933-938.	0.9	9
105	A new design of cleavable acetalâ€containing amphiphilic block copolymers triggered by light. Journal of Polymer Science Part A, 2018, 56, 1815-1824.	2.5	9
106	Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films. Frontiers of Chemical Engineering in China, 2008, 2, 265-268.	0.6	8
107	The effect of the resultant microphase-separated structures of polymer matrices on the electro-optical properties of polymer dispersed liquid crystal films by Iniferter polymerization. European Polymer Journal, 2009, 45, 1936-1940.	2.6	8
108	Polymerâ€Assisted Coâ€Assembly towards Synthesis of Mesoporous Titania Encapsulated Monodisperse PdAu for Highly Selective Hydrogenation of Phenylacetylene. ChemCatChem, 2020, 12, 1476-1482.	1.8	8

#	Article	IF	CITATIONS
109	Effect of molecular weight of macroâ€iniferter on electroâ€optical properties of polymer dispersed liquid crystal films prepared by iniferter polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1530-1534.	2.4	7
110	Structural Engineering in the Self-Assembly of Amphiphilic Block Copolymers with Reactive Additives: Micelles, Vesicles, and Beyond. Langmuir, 2021, 37, 9865-9872.	1.6	7
111	Patchy metal nanoparticles with polymers: controllable growth and two-way self-assembly. Nanoscale, 2022, 14, 7364-7371.	2.8	7
112	Templated synthesis of crystalline mesoporous CeO ₂ with organosilane-containing polymers: balancing porosity, crystallinity and catalytic activity. Materials Futures, 2022, 1, 025302.	3.1	7
113	Synthesis and characterization of copolythiophene. Journal of Applied Polymer Science, 2007, 105, 3543-3550.	1.3	5
114	Bioinspired Design of Hybrid Polymer Catalysts with Multicopper Sites for Oxygen Reduction. ChemCatChem, 2020, 12, 5932-5937.	1.8	5
115	Fluorochromic Hydrogels: Dynamic Coordination of Eu–Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli (Adv. Mater. 11/2018). Advanced Materials, 2018, 30, 1870073.	11.1	4
116	Modeling and Designing Particle-Regulated Amyloid-like Assembly of Synthetic Polypeptides in Aqueous Solution. Biomacromolecules, 2022, 23, 196-209.	2.6	4
117	Self-assembly of gold nanoparticles grafted with amphiphilic supramolecular block copolymers. Giant, 2022, 10, 100102.	2.5	4
118	Fluorochromic polymer films containing ultrasmall silver nanoclusters. Nanotechnology, 2020, 31, 245703.	1.3	3
119	Facile synthesis of water-dispersible poly(3-hexylthiophene) nanoparticles with high yield and excellent colloidal stability. IScience, 2022, 25, 104220.	1.9	3
120	Photo-controlled release of metal ions using triazoline-containing amphiphilic copolymers. Polymer Chemistry, 2019, 10, 3585-3596.	1.9	2
121	Metal nanoparticles grafted with polymeric ligands: Self-assembly guided by polymers in solution. , 2023, , 390-406.		2
122	Polymeric N-Heterocyclic Carbenes to Functionalize Plasmonic Metal Nanoparticles. , 2022, , 409-432.		2
123	Frontispiece: A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, .	7.2	1
124	Functional Polymers for Biointerface Engineering. International Journal of Polymer Science, 2017, 2017, 1-2.	1.2	0
125	Editorial: Metal and Semiconductor Nanocrystals. Frontiers in Chemistry, 2019, 7, 310.	1.8	0
126	Frontispiz: A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2019, 131, .	1.6	0