Chao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7301169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactivity-based chemical-genetic study of protein kinases. RSC Medicinal Chemistry, 2022, 13, 783-797.	3.9	1
2	SARS-CoV-2 couples evasion of inflammatory response to activated nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
3	A two-pronged attack. Nature Chemical Biology, 2020, 16, 1154-1155.	8.0	3
4	Development of a Potent and Specific FGFR4 Inhibitor for the Treatment of Hepatocellular Carcinoma. Journal of Medicinal Chemistry, 2020, 63, 11484-11497.	6.4	24
5	Discovery of Selective Small Molecule Degraders of BRAF-V600E. Journal of Medicinal Chemistry, 2020, 63, 4069-4080.	6.4	43
6	Synthesis and Target Identification of a Novel Electrophilic Warhead, 2-Chloromethylquinoline. Biochemistry, 2019, 58, 2715-2719.	2.5	8
7	Rigidification Dramatically Improves Inhibitor Selectivity for RAF Kinases. ACS Medicinal Chemistry Letters, 2019, 10, 1074-1080.	2.8	10
8	Effects of rigidity on the selectivity of protein kinase inhibitors. European Journal of Medicinal Chemistry, 2018, 146, 519-528.	5.5	11
9	A Chemical-Genetic Approach to Generate Selective Covalent Inhibitors of Protein Kinases. ACS Chemical Biology, 2017, 12, 1499-1503.	3.4	18
10	Remarkably Stereospecific Utilization of ATP α,β-Halomethylene Analogues by Protein Kinases. Journal of the American Chemical Society, 2017, 139, 7701-7704.	13.7	13
11	Covalent Modulators of the Vacuolar ATPase. Journal of the American Chemical Society, 2017, 139, 639-642.	13.7	39
12	A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3α and GSK3Î ² in Regulating Embryonic Stem Cell Fate. Developmental Cell, 2017, 43, 563-576.e4.	7.0	29
13	Development of Specific, Irreversible Inhibitors for a Receptor Tyrosine Kinase EphB3. Journal of the American Chemical Society, 2016, 138, 10554-10560.	13.7	34
14	A chemoproteomic method for identifying cellular targets of covalent kinase inhibitors. Genes and Cancer, 2016, 7, 148-153.	1.9	10
15	5′-β,γ-CHF-ATP Diastereomers: Synthesis and Fluorine-Mediated Selective Binding by c-Src Protein Kinase. Organic Letters, 2015, 17, 1624-1627.	4.6	13
16	Development of Alkyne-Containing Pyrazolopyrimidines To Overcome Drug Resistance of Bcr-Abl Kinase. Journal of Medicinal Chemistry, 2015, 58, 9228-9237.	6.4	26
17	RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 2015, 526, 583-586.	27.8	322
18	Structure-Guided Inhibitor Design Expands the Scope of Analog-Sensitive Kinase Technology. ACS Chemical Biology, 2013, 8, 1931-1938.	3.4	53

CHAO ZHANG

#	Article	IF	CITATIONS
19	A chemical genetic approach reveals distinct EphB signaling mechanisms during brain development. Nature Neuroscience, 2012, 15, 1645-1654.	14.8	33
20	Generation of a set of conditional analog-sensitive alleles of essential protein kinases in the fission yeast <i>Schizosaccharomyces pombe</i> . Cell Cycle, 2011, 10, 3527-3532.	2.6	43
21	RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature, 2010, 464, 427-430.	27.8	1,590
22	Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467, 596-599.	27.8	1,610
23	A genetically selective inhibitor demonstrates a function for the kinase Zap70 in regulatory T cells independent of its catalytic activity. Nature Immunology, 2010, 11, 1085-1092.	14.5	90
24	Synthesis and evaluation of indazole based analog sensitive Akt inhibitors. Molecular BioSystems, 2010, 6, 1389.	2.9	17
25	Phosphorylation of the Transcription Elongation Factor Spt5 by Yeast Bur1 Kinase Stimulates Recruitment of the PAF Complex. Molecular and Cellular Biology, 2009, 29, 4852-4863.	2.3	155
26	Inhibitor hijacking of Akt activation. Nature Chemical Biology, 2009, 5, 484-493.	8.0	272
27	Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3041-3046.	7.1	1,206
28	Enhanced selectivity for inhibition of analog-sensitive protein kinases through scaffold optimization. Tetrahedron, 2007, 63, 5832-5838.	1.9	12
29	A Coupled Chemical-Genetic and Bioinformatic Approach to Polo-like Kinase Pathway Exploration. Chemistry and Biology, 2007, 14, 1261-1272.	6.0	75
30	Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nature Chemical Biology, 2007, 3, 229-238.	8.0	190
31	A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nature Methods, 2005, 2, 435-441.	19.0	127
32	Structural Bioinformatics-Based Design of Selective, Irreversible Kinase Inhibitors. Science, 2005, 308, 1318-1321.	12.6	470
33	Design and Use of Analog‣ensitive Protein Kinases. Current Protocols in Molecular Biology, 2004, 66, Unit 18.11.	2.9	52
34	Unnatural Ligands for Engineered Proteins: New Tools for Chemical Genetics. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 577-606.	18.3	156