Chao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7301169/publications.pdf

Version: 2024-02-01

304743 377865 6,768 34 22 34 h-index citations g-index papers 34 34 34 9426 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467, 596-599.	27.8	1,610
2	RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature, 2010, 464, 427-430.	27.8	1,590
3	Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3041-3046.	7.1	1,206
4	Structural Bioinformatics-Based Design of Selective, Irreversible Kinase Inhibitors. Science, 2005, 308, 1318-1321.	12.6	470
5	RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 2015, 526, 583-586.	27.8	322
6	Inhibitor hijacking of Akt activation. Nature Chemical Biology, 2009, 5, 484-493.	8.0	272
7	Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nature Chemical Biology, 2007, 3, 229-238.	8.0	190
8	Unnatural Ligands for Engineered Proteins: New Tools for Chemical Genetics. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 577-606.	18.3	156
9	Phosphorylation of the Transcription Elongation Factor Spt5 by Yeast Bur1 Kinase Stimulates Recruitment of the PAF Complex. Molecular and Cellular Biology, 2009, 29, 4852-4863.	2.3	155
10	A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nature Methods, 2005, 2, 435-441.	19.0	127
11	A genetically selective inhibitor demonstrates a function for the kinase Zap70 in regulatory T cells independent of its catalytic activity. Nature Immunology, 2010, 11, 1085-1092.	14.5	90
12	A Coupled Chemical-Genetic and Bioinformatic Approach to Polo-like Kinase Pathway Exploration. Chemistry and Biology, 2007, 14, 1261-1272.	6.0	75
13	Structure-Guided Inhibitor Design Expands the Scope of Analog-Sensitive Kinase Technology. ACS Chemical Biology, 2013, 8, 1931-1938.	3.4	53
14	Design and Use of Analogâ€Sensitive Protein Kinases. Current Protocols in Molecular Biology, 2004, 66, Unit 18.11.	2.9	52
15	Generation of a set of conditional analog-sensitive alleles of essential protein kinases in the fission yeast <i>Schizosaccharomyces pombe</i>). Cell Cycle, 2011, 10, 3527-3532.	2.6	43
16	Discovery of Selective Small Molecule Degraders of BRAF-V600E. Journal of Medicinal Chemistry, 2020, 63, 4069-4080.	6.4	43
17	Covalent Modulators of the Vacuolar ATPase. Journal of the American Chemical Society, 2017, 139, 639-642.	13.7	39
18	Development of Specific, Irreversible Inhibitors for a Receptor Tyrosine Kinase EphB3. Journal of the American Chemical Society, 2016, 138, 10554-10560.	13.7	34

#	Article	IF	CITATIONS
19	A chemical genetic approach reveals distinct EphB signaling mechanisms during brain development. Nature Neuroscience, 2012, 15, 1645-1654.	14.8	33
20	A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3 \hat{l}_{\pm} and GSK3 \hat{l}_{\pm} in Regulating Embryonic Stem Cell Fate. Developmental Cell, 2017, 43, 563-576.e4.	7.0	29
21	Development of Alkyne-Containing Pyrazolopyrimidines To Overcome Drug Resistance of Bcr-Abl Kinase. Journal of Medicinal Chemistry, 2015, 58, 9228-9237.	6.4	26
22	Development of a Potent and Specific FGFR4 Inhibitor for the Treatment of Hepatocellular Carcinoma. Journal of Medicinal Chemistry, 2020, 63, 11484-11497.	6.4	24
23	A Chemical-Genetic Approach to Generate Selective Covalent Inhibitors of Protein Kinases. ACS Chemical Biology, 2017, 12, 1499-1503.	3.4	18
24	Synthesis and evaluation of indazole based analog sensitive Akt inhibitors. Molecular BioSystems, 2010, 6, 1389.	2.9	17
25	5′-β,γ-CHF-ATP Diastereomers: Synthesis and Fluorine-Mediated Selective Binding by c-Src Protein Kinase. Organic Letters, 2015, 17, 1624-1627.	4. 6	13
26	Remarkably Stereospecific Utilization of ATP $\hat{l}\pm,\hat{l}^2$ -Halomethylene Analogues by Protein Kinases. Journal of the American Chemical Society, 2017, 139, 7701-7704.	13.7	13
27	SARS-CoV-2 couples evasion of inflammatory response to activated nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
28	Enhanced selectivity for inhibition of analog-sensitive protein kinases through scaffold optimization. Tetrahedron, 2007, 63, 5832-5838.	1.9	12
29	Effects of rigidity on the selectivity of protein kinase inhibitors. European Journal of Medicinal Chemistry, 2018, 146, 519-528.	5.5	11
30	Rigidification Dramatically Improves Inhibitor Selectivity for RAF Kinases. ACS Medicinal Chemistry Letters, 2019, 10, 1074-1080.	2.8	10
31	A chemoproteomic method for identifying cellular targets of covalent kinase inhibitors. Genes and Cancer, 2016, 7, 148-153.	1.9	10
32	Synthesis and Target Identification of a Novel Electrophilic Warhead, 2-Chloromethylquinoline. Biochemistry, 2019, 58, 2715-2719.	2.5	8
33	A two-pronged attack. Nature Chemical Biology, 2020, 16, 1154-1155.	8.0	3
34	Reactivity-based chemical-genetic study of protein kinases. RSC Medicinal Chemistry, 2022, 13, 783-797.	3.9	1