Chang-Ping Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7300983/publications.pdf

Version: 2024-02-01

69 papers

2,815 citations

30 h-index 50 g-index

71 all docs

71 docs citations

times ranked

71

3087 citing authors

#	Article	IF	CITATIONS
1	Tracking microeukaryotic footprint in a peri-urban watershed, China through machine-learning approaches. Science of the Total Environment, 2022, 806, 150401.	8.0	15
2	Spatial autocorrelation and temporal variation of contaminants of emerging concern in a typical urbanizing river. Water Research, 2022, 212, 118120.	11.3	27
3	Domestic wastewater causes nitrate pollution in an agricultural watershed, China. Science of the Total Environment, 2022, 823, 153680.	8.0	30
4	Changes in Wastewater Treatment Performance and the Microbial Community during the Bioaugmentation of a Denitrifying Pseudomonas Strain in the Low Carbon–Nitrogen Ratio Sequencing Batch Reactor. Water (Switzerland), 2022, 14, 540.	2.7	2
5	Nature-based solutions for securing contributions of water, food, and energy in an urban environment. Environmental Science and Pollution Research, 2022, , 1.	5.3	1
6	Impact of cathodic biofouling on the uneven performance of individual units and scale-up power efficiency in parallel-connected air-cathode microbial fuel cells. Journal of Power Sources, 2022, 532, 231347.	7.8	4
7	Continuous antibiotic attenuation in algal membrane photobioreactor: Performance and kinetics. Journal of Hazardous Materials, 2022, 434, 128910.	12.4	9
8	Evaluation of plant microbial fuel cells for urban green roofs in a subtropical metropolis. Science of the Total Environment, 2021, 765, 142786.	8.0	20
9	Urban ponds as hotspots of antibiotic resistome in the urban environment. Journal of Hazardous Materials, 2021, 403, 124008.	12.4	48
10	Algal extracellular organic matter mediated photocatalytic degradation of estrogens. Ecotoxicology and Environmental Safety, 2021, 209, 111818.	6.0	16
11	Croceicoccus bisphenolivorans sp. nov., a bisphenol A-degrading bacterium isolated from seawater. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	8
12	Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells. Chemosphere, 2021, 266, 129059.	8.2	10
13	Characterization and Performance of Lactate-Feeding Consortia for Reductive Dechlorination of Trichloroethene. Microorganisms, 2021, 9, 751.	3.6	10
14	Intracellular organic matter from Chlorella vulgaris enhances the photodegradation of acetaminophen. Chemosphere, 2021, 271, 129507.	8.2	10
15	Integrated assessment of major and trace elements in surface and core sediments from an urban lagoon, China: Potential ecological risks and influencing factors. Marine Pollution Bulletin, 2021, 170, 112651.	5.0	16
16	Fecal pollution mediates the dominance of stochastic assembly of antibiotic resistome in an urban lagoon (Yundang lagoon), China. Journal of Hazardous Materials, 2021, 417, 126083.	12.4	22
17	A Technical Analysis of Solid Recovered Fuel from Torrefied Jatropha Seed Residue via a Two-Stage Mechanical Screw Press and Solvent Extraction Process. Energies, 2021, 14, 7876.	3.1	1
18	Microbial degradation of steroid sex hormones: implications for environmental and ecological studies. Microbial Biotechnology, 2020, 13, 926-949.	4.2	68

#	Article	IF	CITATIONS
19	Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways. Journal of Hazardous Materials, 2020, 387, 121985.	12.4	121
20	Response of prokaryotic communities to extreme precipitation events in an urban coastal lagoon: A case study of Yundang lagoon, China. Science of the Total Environment, 2020, 706, 135937.	8.0	14
21	Bisphenol A attenuation in natural microcosm: Contribution of ecological components and identification of transformation pathways through stable isotope tracing. Journal of Hazardous Materials, 2020, 385, 121584.	12.4	28
22	Biogas Production and Microbial Communities in the Anaerobic Digestion of Sewage Sludge Under Hydrothermal Pretreatment with Air and a Catalyst. Bioenergy Research, 2020, 14, 828.	3.9	3
23	Hydrothermal conversion of waste cartons into a magnetic carbon-iron composite for use as an efficient and recyclable dye adsorbent. Journal of Colloid and Interface Science, 2020, 578, 717-725.	9.4	9
24	Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. Science of the Total Environment, 2020, 721, 137767.	8.0	19
25	Simultaneous analysis of multiclass antibiotic residues in complex environmental matrices by liquid chromatography with tandem quadrupole mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1145, 122103.	2.3	29
26	Homogeneous selection drives antibiotic resistome in two adjacent sub-watersheds, China. Journal of Hazardous Materials, 2020, 398, 122820.	12.4	46
27	Selective and fast recovery of rare earth elements from industrial wastewater by porous \hat{l}^2 -cyclodextrin and magnetic \hat{l}^2 -cyclodextrin polymers. Water Research, 2020, 181, 115857.	11.3	66
28	Sphingobium estronivorans sp. nov. and Sphingobium bisphenolivorans sp. nov., isolated from a wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1822-1829.	1.7	24
29	A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant. Energies, 2019, 12, 2424.	3.1	11
30	Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: A case study of Lahore, Pakistan. Science of the Total Environment, 2019, 688, 653-663.	8.0	105
31	Occurrence, geochemical fractionation, and environmental risk assessment of major and trace elements in sewage sludge. Journal of Environmental Management, 2019, 249, 109427.	7.8	44
32	Biotransformation of estrone, $17\hat{l}^2$ -estradiol and $17\hat{l}\pm$ -ethynylestradiol by four species of microalgae. Ecotoxicology and Environmental Safety, 2019, 180, 723-732.	6.0	38
33	Occurrence, seasonal variation and risk evaluation of selected endocrine disrupting compounds and their transformation products in Jiulong river and estuary, China. Marine Pollution Bulletin, 2019, 145, 370-376.	5.0	34
34	Chemical Characteristics of Electron Shuttles Affect Extracellular Electron Transfer: Shewanella decolorationis NTOU1 Simultaneously Exploiting Acetate and Mediators. Frontiers in Microbiology, 2019, 10, 399.	3.5	13
35	Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils. Science of the Total Environment, 2019, 670, 585-594.	8.0	46
36	Using the entrapped bioprocess as the pretreatment method for the drinking water treatment receiving eutrophic source water. Environmental Pollution, 2019, 248, 57-65.	7.5	6

#	Article	IF	CITATIONS
37	Predicting Microbial Species in a River Based on Physicochemical Properties by Bio-Inspired Metaheuristic Optimized Machine Learning. Sustainability, 2019, 11, 6889.	3.2	5
38	Metabolites Involved in Aerobic Degradation of the A and B Rings of Estrogen. Applied and Environmental Microbiology, 2019, 85, .	3.1	37
39	Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. Journal of Hazardous Materials, 2019, 365, 137-145.	12.4	86
40	Monitoring and mass balance analysis of endocrine disrupting compounds and their transformation products in an anaerobic-anoxic-oxic wastewater treatment system in Xiamen, China. Chemosphere, 2018, 204, 170-177.	8.2	32
41	Contribution of biotic and abiotic factors in the natural attenuation of sulfamethoxazole: A path analysis approach. Science of the Total Environment, 2018, 633, 1217-1226.	8.0	23
42	Monitoring, mass balance and fate of pharmaceuticals and personal care products in seven wastewater treatment plants in Xiamen City, China. Journal of Hazardous Materials, 2018, 354, 81-90.	12.4	98
43	Biodegradation of sulfamethoxazole in bacteria from three different origins. Journal of Environmental Management, 2018, 206, 93-102.	7.8	121
44	Identification of Enantiomeric Byproducts During Microalgae-Mediated Transformation of Metoprolol by MS/MS Spectrum Based Networking. Frontiers in Microbiology, 2018, 9, 2115.	3 . 5	15
45	Prokaryotic footprints in urban water ecosystems: A case study of urban landscape ponds in a coastal city, China. Environmental Pollution, 2018, 242, 1729-1739.	7.5	35
46	Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water. Chemosphere, 2018, 208, 285-293.	8.2	59
47	Occurrence and fate of bisphenol A transformation products, bisphenol A monomethyl ether and bisphenol A dimethyl ether, in wastewater treatment plants and surface water. Journal of Hazardous Materials, 2018, 357, 401-407.	12.4	42
48	Biochemical Mechanisms and Catabolic Enzymes Involved in Bacterial Estrogen Degradation Pathways. Cell Chemical Biology, 2017, 24, 712-724.e7.	5.2	96
49	Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China. Environmental Pollution, 2017, 225, 542-549.	7.5	138
50	Comparative studies of aerobic and anaerobic biodegradation of methylparaben and propylparaben in activated sludge. Ecotoxicology and Environmental Safety, 2017, 138, 25-31.	6.0	54
51	Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China. Water Research, 2017, 123, 655-667.	11.3	156
52	Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. Journal of Hazardous Materials, 2017, 321, 47-53.	12.4	141
53	Evaluation of Sulfadiazine Degradation in Three Newly Isolated Pure Bacterial Cultures. PLoS ONE, 2016, 11, e0165013.	2.5	52
54	PPCPs in Jiulong River estuary (China): Spatiotemporal distributions, fate, and their use as chemical markers of wastewater. Chemosphere, 2016, 150, 596-604.	8.2	127

#	Article	IF	CITATIONS
55	Triclosan: A review on systematic risk assessment and control from the perspective of substance flow analysis. Science of the Total Environment, 2016, 566-567, 771-785.	8.0	40
56	Integrated multi-omics analyses reveal the biochemical mechanisms and phylogenetic relevance of anaerobic androgen biodegradation in the environment. ISME Journal, 2016, 10, 1967-1983.	9.8	48
57	Assessment of the fate of silver nanoparticles in the A2O-MBR system. Science of the Total Environment, 2016, 544, 901-907.	8.0	8
58	Altererythrobacter estronivorus sp. nov., an Estrogen-Degrading Strain Isolated from Yundang Lagoon of Xiamen City in China. Current Microbiology, 2016, 72, 634-640.	2.2	28
59	Removal of environmental estrogens by bacterial cell immobilization technique. Chemosphere, 2016, 144, 607-614.	8.2	41
60	Biogeography of Planktonic and Benthic Archaeal Communities in a Subtropical Eutrophic Estuary of China. Microbial Ecology, 2015, 70, 322-335.	2.8	31
61	Pharmaceuticals and personal care products in a mesoscale subtropical watershed and their application as sewage markers. Journal of Hazardous Materials, 2014, 280, 696-705.	12.4	91
62	A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load. Bioresource Technology, 2013, 143, 76-82.	9.6	38
63	Draft Genome Sequence of the Bisphenol A-Degrading Bacterium Sphingobium sp. Strain YL23. Genome Announcements, 2013, 1, .	0.8	11
64	Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Research, 2011, 45, 1157-1164.	11.3	81
65	Quantitative Molecular Assay for Fingerprinting Microbial Communities of Wastewater and Estrogen-Degrading Consortia. Applied and Environmental Microbiology, 2005, 71, 1433-1444.	3.1	69
66	Mechanisms of the Reaction of Ozone with p-Nitrophenol. Ozone: Science and Engineering, 2001, 23, 303-312.	2.5	27
67	Evaluation of biodegradability by the reduction of Tetrazolium Violet in Biolog microplates. Biotechnology Letters, 2000, 22, 909-913.	2.2	6
68	Acid-catalyzed hydrothermal treatment of sewage sludge: effects of reaction temperature and acid concentration on the production of hydrolysis by-products. Biomass Conversion and Biorefinery, 0 , , 1 .	4.6	4
69	Evaluation of long-term performance of plant microbial fuel cells using agricultural plants under the controlled environment. Clean Technologies and Environmental Policy, 0, , 1.	4.1	2