Dominik Sturm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7300373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482, 226-231.	27.8	2,129
2	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	27.8	1,872
3	Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell, 2012, 22, 425-437.	16.8	1,551
4	The landscape of genomic alterations across childhood cancers. Nature, 2018, 555, 321-327.	27.8	1,068
5	K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathologica, 2012, 124, 439-447.	7.7	799
6	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	27.8	765
7	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	28.9	702
8	Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013, 45, 927-932.	21.4	674
9	Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell, 2013, 24, 660-672.	16.8	633
10	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	16.8	627
11	DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncology, The, 2017, 18, 682-694.	10.7	586
12	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	27.8	520
13	Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nature Reviews Cancer, 2014, 14, 92-107.	28.4	469
14	Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell, 2016, 29, 379-393.	16.8	438
15	BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nature Medicine, 2013, 19, 901-908.	30.7	388
16	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	1.6	381
17	Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nature Genetics, 2014, 46, 462-466.	21.4	381
18	Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 2015, 129, 669-678.	7.7	277

#	Article	IF	CITATIONS
19	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	10.7	268
20	Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathologica, 2013, 126, 907-915.	7.7	254
21	Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathologica, 2013, 125, 659-669.	7.7	250
22	Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. Journal of Clinical Oncology, 2018, 36, 1963-1972.	1.6	250
23	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	12.8	237
24	Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. Journal of Clinical Oncology, 2017, 35, 2370-2377.	1.6	223
25	Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathologica, 2016, 131, 903-910.	7.7	203
26	Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica, 2014, 128, 279-289.	7.7	191
27	Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro-Oncology, 2018, 20, 123-131.	1.2	184
28	Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nature Medicine, 2016, 22, 1314-1320.	30.7	183
29	Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathologica, 2014, 128, 561-571.	7.7	176
30	Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathologica, 2016, 131, 137-146.	7.7	162
31	Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discovery, 2020, 10, 942-963.	9.4	157
32	H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathologica, 2017, 134, 507-516.	7.7	144
33	<i>FSTL5</i> Is a Marker of Poor Prognosis in Non-WNT/Non-SHH Medulloblastoma. Journal of Clinical Oncology, 2011, 29, 3852-3861.	1.6	143
34	Adult and Pediatric Medulloblastomas Are Genetically Distinct and Require Different Algorithms for Molecular Risk Stratification. Journal of Clinical Oncology, 2010, 28, 3054-3060.	1.6	136
35	Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathologica, 2018, 136, 327-337.	7.7	104
36	Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: A matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. European Journal of Cancer, 2017, 73, 38-47.	2.8	101

#	Article	IF	CITATIONS
37	<i>TP53</i> Mutation Is Frequently Associated With <i>CTNNB1</i> Mutation or <i>MYCN</i> Amplification and Is Compatible With Long-Term Survival in Medulloblastoma. Journal of Clinical Oncology, 2010, 28, 5188-5196.	1.6	100
38	Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature, 2020, 580, 396-401.	27.8	94
39	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	28.9	93
40	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	16.8	90
41	Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathology, 2018, 28, 656-662.	4.1	89
42	A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of <i>EGFR</i> . Neuro-Oncology, 2021, 23, 34-43.	1.2	75
43	Chromatin Remodeling Defects in Pediatric and Young Adult Clioblastoma: A Tale of a Variant <scp>H</scp> istone 3 Tail. Brain Pathology, 2013, 23, 210-216.	4.1	74
44	Evidence of H3 K27M mutations in posterior fossa ependymomas. Acta Neuropathologica, 2016, 132, 635-637.	7.7	73
45	Integrated molecular characterization of <i><scp>IDH</scp></i> â€mutant glioblastomas. Neuropathology and Applied Neurobiology, 2019, 45, 108-118.	3.2	68
46	Melanotic Tumors of the Nervous System are Characterized by Distinct Mutational, Chromosomal and Epigenomic Profiles. Brain Pathology, 2015, 25, 202-208.	4.1	66
47	Comprehensive Analysis of Chromatin States in Atypical Teratoid/Rhabdoid Tumor Identifies Diverging Roles for SWI/SNF and Polycomb in Gene Regulation. Cancer Cell, 2019, 35, 95-110.e8.	16.8	65
48	Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathologica, 2021, 141, 85-100.	7.7	52
49	Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clinical Sarcoma Research, 2017, 7, 9.	2.3	51
50	Diffuse glioneuronal tumour with oligodendrogliomaâ€like features and nuclear clusters (DGONC) – a molecularly defined glioneuronal CNS tumour class displaying recurrent monosomy 14. Neuropathology and Applied Neurobiology, 2020, 46, 422-430.	3.2	51
51	Transitioning from genotypes to epigenotypes: Why the time has come for medulloblastoma epigenomics. Neuroscience, 2014, 264, 171-185.	2.3	45
52	No Significant Cytotoxic Effect of the EZH2 Inhibitor Tazemetostat (EPZ-6438) on Pediatric Glioma Cells with Wildtype Histone 3 or Mutated Histone 3.3. Klinische Padiatrie, 2016, 228, 113-117.	0.6	44
53	Development of the SIOPE DIPG network, registry and imaging repository: a collaborative effort to optimize research into a rare and lethal disease. Journal of Neuro-Oncology, 2017, 132, 255-266.	2.9	42
54	Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathologica, 2019, 138, 827-835.	7.7	42

#	Article	IF	CITATIONS
55	Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.	9.4	39
56	Comparative integrated molecular analysis of intraocular medulloepitheliomas and central nervous system embryonal tumors with multilayered rosettes confirms that they are distinct nosologic entities. Neuropathology, 2015, 35, 538-544.	1.2	38
57	High-grade glioma in very young children: a rare and particular patient population. Oncotarget, 2017, 8, 64564-64578.	1.8	38
58	PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum. Acta Neuropathologica, 2021, 142, 841-857.	7.7	36
59	The β-catenin/CBP-antagonist ICG-001 inhibits pediatric glioma tumorigenicity in a Wnt-independent manner. Oncotarget, 2017, 8, 27300-27313.	1.8	35
60	Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathologica, 2021, 142, 827-839.	7.7	33
61	DNA methylation-based profiling of uterine neoplasms: a novel tool to improve gynecologic cancer diagnostics. Journal of Cancer Research and Clinical Oncology, 2020, 146, 97-104.	2.5	29
62	Meningiomas induced by low-dose radiation carry structural variants of NF2 and a distinct mutational signature. Acta Neuropathologica, 2017, 134, 155-158.	7.7	26
63	Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nature Communications, 2021, 12, 5530.	12.8	24
64	Oncolytic effects of parvovirus Hâ€1 in medulloblastoma are associated with repression of master regulators of early neurogenesis. International Journal of Cancer, 2014, 134, 703-716.	5.1	22
65	Therapeutic implications of improved molecular diagnostics for rare CNS embryonal tumor entities: results of an international, retrospective study. Neuro-Oncology, 2021, 23, 1597-1611.	1.2	22
66	A simplified approach using Taqman low-density array for medulloblastoma subgrouping. Acta Neuropathologica Communications, 2019, 7, 33.	5.2	18
67	COPC:ROS1 and other ROS1 fusions represent a rare but recurrent drug target in a variety of glioma types. Acta Neuropathologica, 2021, 142, 1065-1069.	7.7	16
68	Gliomas in Children. Seminars in Neurology, 2018, 38, 121-130.	1.4	15
69	Primary central nervous system sarcoma with <i>DICER1</i> mutation—treatment results of a novel molecular entity in pediatric Peruvian patients. Cancer, 2022, 128, 697-707.	4.1	14
70	Novel oncogene amplifications in tumors from a family with Li–Fraumeni syndrome. Genes Chromosomes and Cancer, 2009, 48, 558-568.	2.8	13
71	Somatostatin receptor subtype 2 (sst2) is a potential prognostic marker and a therapeutic target in medulloblastoma. Child's Nervous System, 2013, 29, 1253-1262.	1.1	12
72	Accurate calling of <i>KIAA1549â€BRAF</i> fusions from DNA of human brain tumours using methylation arrayâ€based copy number and gene panel sequencing data. Neuropathology and Applied Neurobiology, 2021, 47, 406-414.	3.2	12

#	Article	IF	CITATIONS
73	Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival. Acta Neuropathologica Communications, 2022, 10, 5.	5.2	12
74	Occurrence of highâ€grade glioma in Noonan syndrome: Report of two cases. Pediatric Blood and Cancer, 2019, 66, e27625.	1.5	11
75	Imaging Characteristics of Wingless Pathway Subgroup Medulloblastomas: Results from the German HIT/SIOP-Trial Cohort. American Journal of Neuroradiology, 2019, 40, 1811-1817.	2.4	9
76	Molecular Diagnostics in Pediatric Brain Tumors: Impact on Diagnosis and Clinical Decision-Making — A Selected Case Series. Klinische Padiatrie, 2018, 230, 305-313.	0.6	8
77	Two molecularly distinct atypical teratoid/rhabdoid tumors (or tumor components) occurring in an infant with rhabdoid tumor predisposition syndrome 1. Acta Neuropathologica, 2019, 137, 847-850.	7.7	7
78	Changing paradigms in oncology: Toward noncytotoxic treatments for advanced gliomas. International Journal of Cancer, 2022, 151, 1431-1446.	5.1	6
79	A Systematic Review and Meta-Analysis of Malignant Rhabdoid and Small Cell Undifferentiated Liver Tumors: A Rational for a Uniform Classification. Cancers, 2022, 14, 272.	3.7	5
80	DNA-methylome-assisted classification of patients with poor prognostic subventricular zone associated IDH-wildtype glioblastoma. Acta Neuropathologica, 2022, 144, 129-142.	7.7	5
81	Ectopic intracranial retinoblastoma in a 3.5â€monthâ€old infant without eye involvement and without evidence of heritability. Pediatric Blood and Cancer, 2019, 66, e27599.	1.5	3
82	Defining the Spectrum, Treatment and Outcome of Patients With Genetically Confirmed Gorlin Syndrome From the HIT-MED Cohort. Frontiers in Oncology, 2021, 11, 756025.	2.8	3
83	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e348-e349.	1.6	2
84	GENE-08. THE MNP 2.0 STUDY: PROSPECTIVE INTEGRATION OF DNA METHYLATION PROFILING IN CNS TUMOR DIAGNOSTICS. Neuro-Oncology, 2019, 21, ii82-ii82.	1.2	2
85	Revealing the role of SGK1 in the dynamics of medulloblastoma using a mathematical model. Journal of Theoretical Biology, 2014, 354, 105-112.	1.7	1
86	Spontaneous regression of a congenital high-grade glioma – a case report. Neuro-Oncology Advances, 2021, 3, vdab120.	0.7	1
87	MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. Neuro-Oncology, 2022, 24, i107-i107.	1.2	1
88	HGG-56. EXTENSIVE MOLECULAR HETEROGENEITY WITHIN H3-/IDH-WILDTYPE PEDIATRIC GLIOBLASTOMA. Neuro-Oncology, 2020, 22, iii354-iii354.	1.2	0
89	EPEN-18. CROSS-SPECIES GENOMICS IDENTIFIES GLI2 AS AN ONCOGENE OF C11orf95 FUSION-POSITIVE SUPRATENTORIAL EPENDYMOMA. Neuro-Oncology, 2020, 22, iii311-iii311.	1.2	0
90	ALK inhibition as a salvage therapy for a relapsed unclassifiable sarcomatous CNS tumor with EML4/ALK fusion in an infant. Pediatric Blood and Cancer, 2022, 69, e29594.	1.5	0

#	Article	IF	CITATIONS
91	OTHR-32. The Pediatric Targeted Therapy 2.0 registry: robust molecular diagnostics for precision oncology. Neuro-Oncology, 2022, 24, i154-i154.	1.2	0
92	HGG-11. Clinical characteristics and clinical evolution of a large cohort of pediatric patients with primary central nervous system (CNS) tumors and tropomyosin receptor kinase (TRK) fusion Neuro-Oncology, 2022, 24, i61-i62.	1.2	0
93	HGC-61.Landscape of cancer predisposition in pediatric high-grade glioma. Neuro-Oncology, 2022, 24, i76-i76.	1.2	Ο
94	Clinical characteristics and outcome of a large cohort of patients with primary central nervous system (CNS) tumors and tropomyosin receptor kinase (TRK) fusion Journal of Clinical Oncology, 2022, 40, 2052-2052.	1.6	0