Jorge J Casal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/729994/publications.pdf Version: 2024-02-01

LODCE | CASAL

#	Article	IF	CITATIONS
1	Photoreceptor Signaling Networks in Plant Responses to Shade. Annual Review of Plant Biology, 2013, 64, 403-427.	8.6	651
2	Phytochrome B integrates light and temperature signals in <i>Arabidopsis</i> . Science, 2016, 354, 897-900.	6.0	637
3	Shade Avoidance. The Arabidopsis Book, 2012, 10, e0157.	0.5	321
4	Phytochromes, Cryptochromes, Phototropin: Photoreceptor Interactions in Plants. Photochemistry and Photobiology, 2000, 71, 1.	1.3	280
5	Thermomorphogenesis. Annual Review of Plant Biology, 2019, 70, 321-346.	8.6	232
6	Phytochrome Regulation of Branching in Arabidopsis. Plant Physiology, 2010, 152, 1914-1927.	2.3	218
7	Phytochromes and seed germination. Seed Science Research, 1998, 8, 317-329.	0.8	212
8	Light signals perceived by crop and weed plants. Field Crops Research, 2000, 67, 149-160.	2.3	194
9	Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis. Plant Physiology, 2010, 154, 401-409.	2.3	183
10	<i>Arabidopsis thaliana</i> life without phytochromes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4776-4781.	3.3	162
11	Effects of Light Quality on Tiller Production in Lolium spp Plant Physiology, 1983, 72, 900-902.	2.3	161
12	Autophagy regulated by day length determines the number of fertile florets in wheat. Plant Journal, 2008, 55, 1010-1024.	2.8	160
13	Phytochrome B Enhances Photosynthesis at the Expense of Water-Use Efficiency in Arabidopsis Â. Plant Physiology, 2009, 150, 1083-1092.	2.3	157
14	Perception and signalling of light and temperature cues in plants. Plant Journal, 2017, 90, 683-697.	2.8	147
15	Maize Leaves Turn Away from Neighbors. Plant Physiology, 2002, 130, 1181-1189.	2.3	142
16	Photoreceptorâ€mediated kin recognition in plants. New Phytologist, 2015, 205, 329-338.	3.5	134
17	Increased Phytochrome B Alleviates Density Effects on Tuber Yield of Field Potato Crops. Plant Physiology, 2003, 133, 1539-1546.	2.3	130
18	Abscisic Acid Regulates Axillary Bud Outgrowth Responses to the Ratio of Red to Far-Red Light. Plant Physiology, 2013, 163, 1047-1058.	2.3	123

#	Article	IF	CITATIONS
19	Signalling for developmental plasticity. Trends in Plant Science, 2004, 9, 309-314.	4.3	117
20	A quadruple photoreceptor mutant still keeps track of time. Current Biology, 2000, 10, 1013-1015.	1.8	111
21	Ultraviolet B Radiation Enhances a Phytochrome-B-Mediated Photomorphogenic Response in Arabidopsis. Plant Physiology, 2001, 126, 780-788.	2.3	110
22	Regulation of gene expression by light. International Journal of Developmental Biology, 2005, 49, 501-511.	0.3	110
23	Phenotypic characterization of a photomorphogenic mutant. Plant Journal, 2004, 39, 747-760.	2.8	106
24	FHY1 Mediates Nuclear Import of the Light-Activated Phytochrome A Photoreceptor. PLoS Genetics, 2008, 4, e1000143.	1.5	104
25	Hormonal networks involved in apical hook development in darkness and their response to light. Frontiers in Plant Science, 2014, 5, 52.	1.7	93
26	Abscisic Acid, High-Light, and Oxidative Stress Down-Regulate a Photosynthetic Gene via a Promoter Motif Not Involved in Phytochrome-Mediated Transcriptional Regulation. Molecular Plant, 2008, 1, 75-83.	3.9	91
27	A Constitutive Shade-Avoidance Mutant Implicates TIR-NBS-LRR Proteins in Arabidopsis Photomorphogenic Development. Plant Cell, 2006, 18, 2919-2928.	3.1	89
28	RESPONSES OF LIGHT-GROWN WILD-TYPE and LONG-HYPOCOTYL MUTANT CUCUMBER SEEDLINGS TO NATURAL and SIMULATED SHADE LIGHT. Photochemistry and Photobiology, 1991, 54, 819-826.	1.3	88
29	Tillering Responses ofLolium multiflorumPlants to Changes of Red/Far-Red Ratio Typical of Sparse Canopies. Journal of Experimental Botany, 1987, 38, 1432-1439.	2.4	86
30	Mapping Quantitative Trait Loci in Multiple Populations of Arabidopsis thaliana Identifies Natural Allelic Variation for Trichome Density. Genetics, 2005, 169, 1649-1658.	1.2	85
31	Phototropins But Not Cryptochromes Mediate the Blue Light-Specific Promotion of Stomatal Conductance, While Both Enhance Photosynthesis and Transpiration under Full Sunlight Â. Plant Physiology, 2012, 158, 1475-1484.	2.3	85
32	Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytologist, 2018, 217, 1029-1034.	3.5	84
33	COP1 destabilizes DELLA proteins in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13792-13799.	3.3	84
34	Brassinosteroid Mutants Uncover Fine Tuning of Phytochrome Signaling. Plant Physiology, 2002, 128, 173-181.	2.3	82
35	Co-action between phytochrome B and HY4 in Arabidopsis thaliana. Planta, 1995, 197, 213-8.	1.6	81
36	Stem Transcriptome Reveals Mechanisms to Reduce the Energetic Cost of Shade-Avoidance Responses in Tomato Â. Plant Physiology, 2012, 160, 1110-1119.	2.3	81

#	Article	IF	CITATIONS
37	Synergism of Red and Blue Light in the Control of Arabidopsis Gene Expression and Development. Current Biology, 2009, 19, 1216-1220.	1.8	80
38	<scp>COP</scp> 1 reâ€accumulates in the nucleus under shade. Plant Journal, 2013, 75, 631-641.	2.8	79
39	Rapid Decline in Nuclear COSTITUTIVE PHOTOMORPHOGENESIS1 Abundance Anticipates the Stabilization of Its Target ELONGATED HYPOCOTYL5 in the Light. Plant Physiology, 2014, 164, 1134-1138.	2.3	79
40	The <i>VLF</i> loci, polymorphic between ecotypes Landsberg <i>erecta</i> and Columbia, dissect two branches of phytochrome A signal transduction that correspond to veryâ€lowâ€fluence and highâ€irradiance responses. Plant Journal, 1997, 12, 659-667.	2.8	77
41	Convergence of <scp>CONSTITUTIVE PHOTOMORPHOGENESIS</scp> 1 and <scp>PHYTOCHROME INTERACTING FACTOR</scp> signalling during shade avoidance. New Phytologist, 2016, 211, 967-979.	3.5	75
42	Missense Mutation in the PAS2 Domain of Phytochrome A Impairs Subnuclear Localization and a Subset of Responses. Plant Cell, 2002, 14, 1591-1603.	3.1	69
43	Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production. Current Biology, 2016, 26, 3280-3287.	1.8	69
44	PHYTOCHROME KINASE SUBSTRATE1 Regulates Root Phototropism and Gravitropism. Plant Physiology, 2008, 146, 108-115.	2.3	68
45	Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana. Plant Journal, 1999, 18, 499-507.	2.8	67
46	Light, phytochrome signalling and photomorphogenesis in ArabidopsisDedicated to Professor Silvia Braslavsky, to mark her great contribution to photochemistry and photobiology particularly in the field of photothermal methods Photochemical and Photobiological Sciences, 2003, 2, 625.	1.6	67
47	A Growth Regulatory Loop That Provides Homeostasis to Phytochrome A Signaling[W]. Plant Cell, 2003, 15, 2966-2978.	3.1	67
48	Low red/far-red ratios delay spike and stem growth in wheat. Journal of Experimental Botany, 2010, 61, 3151-3162.	2.4	66
49	GIGANTEA Regulates Phytochrome A-Mediated Photomorphogenesis Independently of Its Role in the Circadian Clock. Plant Physiology, 2007, 144, 495-502.	2.3	65
50	Phytochrome B Nuclear Bodies Respond to the Low Red to Far-Red Ratio and to the Reduced Irradiance of Canopy Shade in Arabidopsis. Plant Physiology, 2014, 165, 1698-1708.	2.3	65
51	The VLF loci, polymorphic between ecotypes Landsberg erecta and Columbia, dissect two branches of phytochrome A signal transduction that correspond to very″owâ€fluence and highâ€irradiance responses. Plant Journal, 1997, 12, 659-667.	2.8	64
52	Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant Journal, 2000, 23, 223-232.	2.8	64
53	Temperature-dependent internode elongation in vegetative plants of Arabidopsis thaliana lacking phytochrome B and cryptochrome 1. Planta, 2000, 210, 497-501.	1.6	64

Light quality effects on the appearance of tillers of different order in wheat (<i>Triticum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,62 Td (ae

#	Article	IF	CITATIONS
55	Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of <i>Arabidopsis</i> development. Development (Cambridge), 2001, 128, 2291-2299.	1.2	63
56	The Serine-Rich N-Terminal Domain of Oat Phytochrome A Helps Regulate Light Responses and Subnuclear Localization of the Photoreceptor. Plant Physiology, 2002, 129, 1127-1137.	2.3	62
57	Rewiring of auxin signaling under persistent shade. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5612-5617.	3.3	61
58	Repression of shadeâ€avoidance reactions by sunfleck induction of <i>HY5</i> expression in Arabidopsis. Plant Journal, 2011, 68, 919-928.	2.8	60
59	The loci of perception for phytochrome control of internode growth in light-grown mustard: Promotion by low phytochrome photoequilibria in the internode is enhanced by blue light perceived by the leaves. Planta, 1988, 176, 277-282.	1.6	59
60	Role of Phytochrome B in the Induction of Seed Germination by Light in Arabidopsis thaliana. Journal of Plant Physiology, 1995, 146, 307-312.	1.6	57
61	fhy3-1 Retains Inductive Responses of Phytochrome A. Plant Physiology, 2000, 123, 235-242.	2.3	57
62	Multiple links between shade avoidance and auxin networks. Journal of Experimental Botany, 2018, 69, 213-228.	2.4	55
63	Persistent effects of changes in phytochrome status on internode growth in light-grown mustard: Occurrence, kinetics and locus of perception. Planta, 1988, 175, 214-220.	1.6	54
64	Anatomy, Growth and Survival of a Long-hypocotyl Mutant of Cucumis sativus Deficient in Phytochrome B. Annals of Botany, 1994, 73, 569-575.	1.4	54
65	A Quick HYL1-Dependent Reactivation of MicroRNA Production Is Required for a Proper Developmental Response after Extended Periods of Light Deprivation. Developmental Cell, 2018, 46, 236-247.e6.	3.1	54
66	Phytochrome Control of the Arabidopsis Transcriptome Anticipates Seedling Exposure to Light. Plant Cell, 2005, 17, 2507-2516.	3.1	53
67	Phytochrome A affects stem growth, anthocyanin synthesis, sucrose-phosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta, 1998, 205, 235-241.	1.6	49
68	Resetting of the Circadian Clock by Phytochromes and Cryptochromes in Arabidopsis. Journal of Biological Rhythms, 2001, 16, 523-530.	1.4	49
69	The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability. Plant Molecular Biology, 2007, 63, 669-678.	2.0	48
70	LIGHT PROMOTION OF SEED GERMINATION IN Datura ferox IS MEDIATED BY A HIGHLY STABLE POOL OF PHYTOCHROME. Photochemistry and Photobiology, 1991, 53, 249-254.	1.3	47
71	The Cape Verde Islands Allele of Cryptochrome 2 Enhances Cotyledon Unfolding in the Absence of Blue Light in Arabidopsis Â. Plant Physiology, 2003, 133, 1547-1556.	2.3	46
72	Light-mediated self-organization of sunflower stands increases oil yield in the field. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7975-7980.	3.3	46

#	Article	IF	CITATIONS
73	Diurnal Dependence of Growth Responses to Shade in Arabidopsis: Role of Hormone, Clock, and Light Signaling. Molecular Plant, 2012, 5, 619-628.	3.9	45
74	Heat Shock–Induced Fluctuations in Clock and Light Signaling Enhance Phytochrome B–Mediated <i>Arabidopsis</i> Deetiolation. Plant Cell, 2013, 25, 2892-2906.	3.1	45
75	<scp>CONSTANS</scp> delays Arabidopsis flowering under short days. Plant Journal, 2019, 97, 923-932.	2.8	45
76	Two Photobiological Pathways of Phytochrome A Activity, Only One of Which Shows Dominant Negative Suppression by Phytochrome B. Photochemistry and Photobiology, 2000, 71, 481.	1.3	42
77	Burial conditions affect light responses ofDatura feroxseeds. Seed Science Research, 1998, 8, 423-429.	0.8	40
78	Perception of Sunflecks by the UV-B Photoreceptor UV RESISTANCE LOCUS8. Plant Physiology, 2018, 177, 75-81.	2.3	40
79	Environmental cues affecting development. Current Opinion in Plant Biology, 2002, 5, 37-42.	3.5	39
80	PHYTOCHROME KINASE SUBSTRATE4 Modulates Phytochrome-Mediated Control of Hypocotyl Growth Orientation Â. Plant Physiology, 2008, 147, 661-671.	2.3	39
81	Reduced expression of selected <scp><i>FASCICLINâ€LIKE ARABINOGALACTAN PROTEIN</i></scp> genes associates with the abortion of kernels in field crops of <scp><i>Zea mays</i></scp> (maize) and of <scp>A</scp> rabidopsis seeds. Plant, Cell and Environment, 2018, 41, 661-674.	2.8	38
82	Sustained but Not Transient Phytochrome A Signaling Targets a Region of an Lhcb1*2 Promoter Not Necessary for Phytochrome B Action. Plant Cell, 2000, 12, 1203-1211.	3.1	36
83	Shade delays flowering in <i>Medicago sativa</i> . Plant Journal, 2019, 99, 7-22.	2.8	36
84	The cyclophilin ROC1 links phytochrome and cryptochrome to brassinosteroid sensitivity. Plant Journal, 2012, 71, 712-723.	2.8	35
85	SPA1, a component of phytochrome A signal transduction, regulates the light signaling current. Planta, 2002, 215, 745-753.	1.6	34
86	Coupling of phytochrome B to the control of hypocotyl growth in Arabidopsis. Planta, 1995, 196, 23-9.	1.6	33
87	Functional and Biochemical Analysis of the N-terminal Domain of Phytochrome A. Journal of Biological Chemistry, 2006, 281, 34421-34429.	1.6	33
88	The dynamics of <i><scp>FLOWERING LOCUS</scp> T</i> expression encodes longâ€day information. Plant Journal, 2015, 83, 952-961.	2.8	33
89	Promotion of photomorphogenesis by COP1. Plant Molecular Biology, 2004, 56, 905-915.	2.0	32
90	Neighbour signals perceived by phytochrome B increase thermotolerance in <i>Arabidopsis</i> . Plant, Cell and Environment, 2019, 42, 2554-2566.	2.8	32

1.4

18

#	Article	IF	CITATIONS
91	Brassinosteroid mutants uncover fine tuning of phytochrome signaling. Plant Physiology, 2002, 128, 173-81.	2.3	32
92	Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13624-13629.	3.3	30
93	Low Blue Light Enhances Phototropism by Releasing Cryptochrome1-Mediated Inhibition of <i>PIF4</i> Expression. Plant Physiology, 2020, 183, 1780-1793.	2.3	30
94	Photosynthesis from molecular perspectives: towards future energy production. Photochemical and Photobiological Sciences, 2009, 8, 137-138.	1.6	29
95	Canopy Light Signals and Crop Yield in Sickness and in Health. , 2013, 2013, 1-16.		29
96	Phytochrome <scp>B</scp> dynamics departs from photoequilibrium in the field. Plant, Cell and Environment, 2019, 42, 606-617.	2.8	29
97	The Effects of Plant Density on Shoot and Leaf Lamina Angles in Lolium multiflorum and Paspalum dilatatum. Annals of Botany, 1992, 70, 69-73.	1.4	27
98	Comparative genomic analysis of light-regulated transcripts in the Solanaceae. BMC Genomics, 2009, 10, 60.	1.2	26
99	<scp>LOV</scp> â€domain photoreceptor, encoded in a genomic island, attenuates the virulence of <i><scp>P</scp>seudomonas syringae</i> in lightâ€exposed <scp>A</scp> rabidopsis leaves. Plant Journal, 2013, 76, 322-331.	2.8	26
100	cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. Plant Molecular Biology, 2012, 80, 315-324.	2.0	24
101	Differential phosphorylation of the Nâ€ŧerminal extension regulates phytochrome B signaling. New Phytologist, 2020, 225, 1635-1650.	3.5	24
102	Effect of Light on Winter Wheat (<i>Triticum aestivum</i>) and Italian Ryegrass (<i>Lolium) Tj ETQq0 0 0 rgBT /C</i>	Overlock 1 0.4	0 Tf 50 302
103	New Arabidopsis Recombinant Inbred Lines (Landsberg erecta × Nossen) Reveal Natural Variation in Phytochrome-Mediated Responses. Plant Physiology, 2005, 138, 1126-1135.	2.3	20
104	Phytochromes, Cryptochromes, Phototropin: Photoreceptor Interactions in Plants. Photochemistry and Photobiology, 2000, 71, 1-11.	1.3	20
105	Long-day photoperiod enhances jasmonic acid-related plant defense. Plant Physiology, 2018, 178, pp.00443.2018.	2.3	20
106	Metaâ€Analysis of the Transcriptome Reveals a Core Set of Shadeâ€Avoidance Genes in Arabidopsis. Photochemistry and Photobiology, 2017, 93, 692-702.	1.3	19
107	Shade avoidance responses become more aggressive in warm environments. Plant, Cell and Environment, 2020, 43, 1625-1636.	2.8	19

Phytochrome B enhances plant growth, biomass and grain yield in field-grown maize. Annals of Botany, 2019, 123, 1079-1088.

#	Article	IF	CITATIONS
109	Different Phototransduction Kinetics of Phytochrome A and Phytochrome B in Arabidopsis thaliana1. Plant Physiology, 1998, 116, 1533-1538.	2.3	17
110	Artificial selection for grain yield has increased net CO2 exchange of the ear leaf in maize crops. Journal of Experimental Botany, 2021, 72, 3902-3913.	2.4	17
111	A 146 bp fragment of the tobacco Lhcb1*2 promoter confers very-low-fluence, low-fluence and high-irradiance responses of phytochrome to a minimal CaMV 35S promoter. Plant Molecular Biology, 1997, 33, 245-255.	2.0	16
112	Effects of Blue Light Pretreatments on Internode Extension Growth in Mustard Seedlings after the Transition to Darkness: Analysis of the Interaction with Phytochrome. Journal of Experimental Botany, 1989, 40, 893-899.	2.4	15
113	Phytochrome B and PCH1 protein dynamics store night temperature information. Plant Journal, 2021, 105, 22-33.	2.8	15
114	Functional convergence of growth responses to shade and warmth in <i>Arabidopsis</i> . New Phytologist, 2021, 231, 1890-1905.	3.5	15
115	Hysteresis in PHYTOCHROME-INTERACTING FACTOR 4 and EARLY-FLOWERING 3 dynamics dominates warm daytime memory in Arabidopsis. Plant Cell, 2022, 34, 2188-2204.	3.1	15
116	Novel effects of phytochrome status on reproductive shoot growth in <i>Triticum aestivum</i> L New Phytologist, 1993, 123, 45-51.	3.5	14
117	Finding Unexpected Patterns in Microarray Data. Plant Physiology, 2003, 133, 1717-1725.	2.3	13
118	Is the far-red-absorbing form of Avena phytochrome A that is present at the end of the day able to sustain stem-growth inhibition during the night in transgenic tobacco and tomato seedlings?. Planta, 1995, 197, 225.	1.6	12
119	Pre-germination seed–phytochrome signals control stem extension in dark-grown Arabidopsis seedlings. Photochemical and Photobiological Sciences, 2004, 3, 612-616.	1.6	12
120	Balancing forces in the photoperiodic control of flowering. Photochemical and Photobiological Sciences, 2011, 10, 451-460.	1.6	12
121	PHYTOCHROME CONTROL OF EXTRACELLULAR PEROXIDASE ACTIVITY IN MUSTARD INTERNODES: CORRELATION WITH GROWTH, and COMPARISON WITH THE EFFECT OF WOUNDING. Photochemistry and Photobiology, 1990, 52, 165-172.	1.3	11
122	Suppression of Pleiotropic Effects of Functional CRYPTOCHROME Genes by TERMINAL FLOWER 1. Genetics, 2008, 180, 1467-1474.	1.2	11
123	Metabolic responses to red/far-red ratio and ontogeny show poor correlation with the growth rate of sunflower stems. Journal of Experimental Botany, 2008, 59, 2469-2477.	2.4	11
124	Multiple Dimensions in Plant Signal Transduction: An Overview. Methods in Molecular Biology, 2009, 479, 1-16.	0.4	11
125	Phytochrome A Antagonizes PHYTOCHROME INTERACTING FACTOR 1 to Prevent Over-Activation of Photomorphogenesis. Molecular Plant, 2014, 7, 1415-1428.	3.9	11
126	Phytochrome B links the environment to transcription. Journal of Experimental Botany, 2021, 72, 4068-4084.	2.4	11

#	Article	IF	CITATIONS
127	Phytochrome Effects on the Relationship between Chlorophyll and Steady-State Levels of Thylakoid Polypeptides in Light-Grown Tobacco. Plant Physiology, 1990, 94, 370-374.	2.3	10
128	Contributions of cryptochromes and phototropins to stomatal opening through the day. Functional Plant Biology, 2020, 47, 226.	1.1	10
129	Shoot thermosensors do not fulfil the same function in the root. New Phytologist, 2022, 236, 9-14.	3.5	10
130	Effects of End-of-Day Red/Far-Red Ratio on Growth and Orientation of Sunflower Leaves. Botanical Gazette, 1987, 148, 463-467.	0.6	9
131	PHYSIOLOGICAL RELATIONSHIPS BETWEEN PHYTOCHROME EFFECTS ON INTERNODE EXTENSION GROWTH AND DRY MATTER ACCUMULATION INLIGHTâ€GROWN MUSTARD. Photochemistry and Photobiology, 1992, 56, 571-577.	1.3	8
132	CP3 is involved in negative regulation of phytochrome A signalling in Arabidopsis. Planta, 2002, 215, 557-564.	1.6	7
133	Blue Rhythms Between GIGANTEA and Phytochromes. Plant Signaling and Behavior, 2007, 2, 530-532.	1.2	7
134	The timing of low R. Plant Signaling and Behavior, 2014, 9, e28668.	1.2	6
135	Auxin–Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040030.	2.3	6
136	Use of Confocal Laser as Light Source Reveals Stomata-Autonomous Function. PLoS ONE, 2006, 1, e36.	1.1	5
137	Two Photobiological Pathways of Phytochrome A Activity, Only One of Which Shows Dominant Negative Suppression by Phytochrome B. Photochemistry and Photobiology, 2007, 71, 481-486.	1.3	3
138	Plant Responses to Canopy Density Mediated by Photomorphogenic Processes. , 0, , 779-786.		3
139	Phytochrome-mediated effects on extracellular peroxidase activity, lignin content and bending resistance in etiolated Vicia faba epicotyls. Physiologia Plantarum, 1994, 92, 555-562.	2.6	3
140	Sustained but Not Transient Phytochrome A Signaling Targets a Region of an Lhcb1*2 Promoter Not Necessary for Phytochrome B Action. Plant Cell, 2000, 12, 1203.	3.1	0
141	Convergence of Phytochrome and Cryptochrome Signalling. , 2005, , 285-292.		0