List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7299207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalysis. A multi-faceted concept for green chemistry. Chemical Society Reviews, 2009, 38, 1999.	18.7	920
2	Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chemical Reviews, 2016, 116, 9850-9913.	23.0	867
3	Photoorganocatalysis. What for?. Chemical Society Reviews, 2013, 42, 97-113.	18.7	790
4	Photocatalysis for the Formation of the Câ [°] C Bond. Chemical Reviews, 2007, 107, 2725-2756.	23.0	746
5	Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C–H Bonds Elaboration. Chemical Reviews, 2022, 122, 1875-1924.	23.0	442
6	Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. Nature, 2016, 532, 218-222.	13.7	345
7	Site-Selective C–H Functionalization by Decatungstate Anion Photocatalysis: Synergistic Control by Polar and Steric Effects Expands the Reaction Scope. ACS Catalysis, 2018, 8, 701-713.	5.5	313
8	C(sp ³)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science, 2020, 369, 92-96.	6.0	263
9	Green chemistry and photochemistry were born at the same time. Green Chemistry, 2004, 6, 1.	4.6	253
10	Decatungstate Anion for Photocatalyzed "Window Ledge―Reactions. Accounts of Chemical Research, 2016, 49, 2232-2242.	7.6	244
11	Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chemical Reviews, 2020, 120, 9790-9833.	23.0	241
12	Dyes as Visible Light Photoredox Organocatalysts. ChemCatChem, 2012, 4, 169-171.	1.8	227
13	Acylation of Electrophilic Olefins through Decatungstate-Photocatalyzed Activation of Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 2531-2534.	7.2	180
14	Selective C(sp ³)â^H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie - International Edition, 2018, 57, 4078-4082.	7.2	179
15	Atomâ€Economical Synthesis of Unsymmetrical Ketones through Photocatalyzed CH Activation of Alkanes and Coupling with CO and Electrophilic Alkenes. Angewandte Chemie - International Edition, 2011, 50, 1869-1872.	7.2	151
16	Photogenerated acyl/alkoxycarbonyl/carbamoyl radicals for sustainable synthesis. Green Chemistry, 2019, 21, 748-764.	4.6	142
17	Photocatalytic Cï£;H Activation by Hydrogenâ€Atom Transfer in Synthesis. ChemCatChem, 2015, 7, 1516-1523	1.8	140
18	Photosensitized Oxidation of Sulfides: Discriminating between the Singlet-Oxygen Mechanism and Electron Transfer Involving Superoxide Anion or Molecular Oxygen. Chemistry - A European Journal, 2006, 12, 4844-4857.	1.7	139

#	Article	IF	CITATIONS
19	The sunny side of chemistry: green synthesis by solar light. Photochemical and Photobiological Sciences, 2009, 8, 1499-1516.	1.6	138
20	Efficient C–H/C–N and C–H/C–CO–N Conversion via Decatungstate-Photoinduced Alkylation of Diisopropyl Azodicarboxylate. Organic Letters, 2013, 15, 2554-2557.	2.4	137
21	Arylation Reactions:  The Photo-SN1 Path via Phenyl Cation as an Alternative to Metal Catalysis. Accounts of Chemical Research, 2005, 38, 713-721.	7.6	134
22	Sunlight photocatalyzed regioselective β-alkylation and acylation of cyclopentanones. Chemical Science, 2014, 5, 2893-2898.	3.7	129
23	Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors via decatungstate photocatalysis. Chemical Communications, 2017, 53, 2335-2338.	2.2	125
24	Unraveling the Key Features of the Reactive State of Decatungstate Anion in Hydrogen Atom Transfer (HAT) Photocatalysis. ACS Catalysis, 2016, 6, 7174-7182.	5.5	124
25	Multiwalled Carbon Nanotube Chemically Modified Gold Electrode for Inorganic As Speciation and Bi(III) Determination. Analytical Chemistry, 2006, 78, 4194-4199.	3.2	123
26	Solar light-driven photocatalyzed alkylations. Chemistry on the window ledge. Chemical Communications, 2009, , 7351.	2.2	123
27	The Aromatic Carbon–Carbon <i>ipso</i> ‣ubstitution Reaction. Chemistry - A European Journal, 2010, 16, 13572-13589.	1.7	123
28	Acyl Radicals from Acylsilanes: Photoredox-Catalyzed Synthesis of Unsymmetrical Ketones. ACS Catalysis, 2018, 8, 304-309.	5.5	97
29	Photo-Cross-Coupling Reaction of Electron-Rich Aryl Chlorides and Aryl Esters with Alkynes: A Metal-Free Alkynylation. Angewandte Chemie - International Edition, 2005, 44, 5675-5678.	7.2	96
30	Tetrabutylammonium Decatungstate-Photosensitized Alkylation of Electrophilic Alkenes: Convenient Functionalization of Aliphatic Cï&¿H Bonds. Chemistry - A European Journal, 2006, 12, 4153-4163.	1.7	93
31	Tuning the Thermal Isomerization of Phenylazoindole Photoswitches from Days to Nanoseconds. Journal of the American Chemical Society, 2018, 140, 2940-2946.	6.6	92
32	Visible Light Uranyl Photocatalysis: Direct C–H to C–C Bond Conversion. ACS Catalysis, 2019, 9, 3054-3058.	5.5	84
33	(Sensitized) Photolysis of Diazonium Salts as a Mild General Method for the Generation of Aryl Cations. Chemoselectivity of the Singlet and Triplet 4-Substituted Phenyl Cations. Journal of Organic Chemistry, 2005, 70, 603-610.	1.7	82
34	Metalâ€Free Synthesis of Sterically Crowded Biphenyls by Direct ArH Substitution in Alkyl Benzenes. Angewandte Chemie - International Edition, 2007, 46, 6495-6498.	7.2	81
35	Decatungstateâ€Photocatalyzed Siâ^'H/Câ^'H Activation in Silyl Hydrides: Hydrosilylation of Electronâ€Poor Alkenes. ChemCatChem, 2015, 7, 3350-3357.	1.8	80
36	Wavelength Selective Generation of Aryl Radicals and Aryl Cations for Metal-Free Photoarylations. Journal of Organic Chemistry, 2016, 81, 9612-9619.	1.7	76

#	Article	IF	CITATIONS
37	Photoinduced, Ionic Meerwein Arylation of Olefins. Journal of Organic Chemistry, 2001, 66, 6344-6352.	1.7	74
38	Benzoyl radicals from (hetero)aromatic aldehydes. Decatungstate photocatalyzed synthesis of substituted aromatic ketones. Organic and Biomolecular Chemistry, 2010, 8, 4158.	1.5	72
39	Generation and Reactivity of the 4-Aminophenyl Cation by Photolysis of 4-Chloroaniline. Journal of Organic Chemistry, 2001, 66, 6353-6363.	1.7	70
40	Homolytic vs Heterolytic Paths in the Photochemistry of Haloanilines. Journal of the American Chemical Society, 2003, 125, 13182-13190.	6.6	70
41	(Hetero)aromatics from dienynes, enediynes and enyne–allenes. Chemical Society Reviews, 2016, 45, 4364-4390.	18.7	70
42	Environment-friendly organic synthesis. The photochemical approach. Pure and Applied Chemistry, 2000, 72, 1321-1326.	0.9	69
43	Photochemical technologies assessed: the case of rose oxide. Green Chemistry, 2011, 13, 1876.	4.6	69
44	Aryl Cations from Aromatic Halides. Photogeneration and Reactivity of 4-Hydroxy(methoxy)phenyl Cation. Journal of Organic Chemistry, 2004, 69, 3465-3473.	1.7	68
45	Metal-Free Cross-Coupling Reactions of Aryl Sulfonates and Phosphates through Photoheterolysis of Aryl-Oxygen Bonds. Angewandte Chemie - International Edition, 2005, 44, 1232-1236.	7.2	68
46	Decatungstate As Photoredox Catalyst: Benzylation of Electron-Poor Olefins. Organic Letters, 2012, 14, 4218-4221.	2.4	67
47	Benzyl (Phenyl) γ- and δ-lactones via Photoinduced Tandem Arâ^'C, Câ^'O Bond Formation. Journal of the American Chemical Society, 2006, 128, 10670-10671.	6.6	65
48	Photomediated synthesis of \hat{l}^2 -alkylketones from cycloalkanes. Tetrahedron, 2006, 62, 5527-5535.	1.0	65
49	Decatungstate Photocatalyzed Acylations and Alkylations in Flow v <i>ia</i> Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2015, 357, 3687-3695.	2.1	65
50	Tetrabutylammonium Decatungstate (Chemo)selective Photocatalyzed, Radical CH Functionalization in Amides. Advanced Synthesis and Catalysis, 2008, 350, 2209-2214.	2.1	64
51	Polyoxotungstate Photoinduced Alkylation of Electrophilic Alkenes by Cycloalkanes. Chemistry - A European Journal, 2004, 10, 142-148.	1.7	63
52	Smooth Photocatalyzed Benzylation of Electrophilic Olefins via Decarboxylation of Arylacetic Acids. Journal of Organic Chemistry, 2016, 81, 7102-7109.	1.7	63
53	Synthesis of monoprotected 1,4-diketones by photoinduced alkylation of enones with 2-substituted-1,3-dioxolanes. Tetrahedron, 2001, 57, 10319-10328.	1.0	61
54	Smooth Photocatalytic Preparation of 2‣ubstituted 1,3â€Benzodioxoles. Chemistry - A European Journal, 2011, 17, 572-579.	1.7	60

#	Article	IF	CITATIONS
55	Synthesis of γ-lactols, γ-lactones and 1,4-monoprotected succinaldehydes under moderately concentrated sunlight. Green Chemistry, 2009, 11, 1653.	4.6	59
56	Photochemical Synthesis of 4-Oxobutanal Acetals and of 2-Hydroxycyclobutanone Ketals. Journal of Organic Chemistry, 1999, 64, 5024-5028.	1.7	58
57	Assessing photochemistry as a green synthetic method. Carbon–carbon bond forming reactions. Green Chemistry, 2009, 11, 239-249.	4.6	58
58	Biaryl Formation Involving Carbonâ€Based Leaving Groups: Why Not?. Angewandte Chemie - International Edition, 2008, 47, 10022-10025.	7.2	57
59	Wavelength dependence and wavelength selectivity in photochemical reactions. Photochemical and Photobiological Sciences, 2019, 18, 2094-2101.	1.6	56
60	Vinylpyridines as Building Blocks for the Photocatalyzed Synthesis of Alkylpyridines. Chemistry - A European Journal, 2017, 23, 6527-6530.	1.7	55
61	A Tinâ€Free, Radical Photocatalyzed Addition to Vinyl Sulfones. Advanced Synthesis and Catalysis, 2011, 353, 3295-3300.	2.1	54
62	Phosphate esters as "tunable―reagents in organic synthesis. Chemical Communications, 2008, , 3611.	2.2	53
63	Geometry and Energy of Substituted Phenyl Cations. Journal of Organic Chemistry, 2008, 73, 206-211.	1.7	53
64	Photocatalyzed Site-Selective C–H to C–C Conversion of Aliphatic Nitriles. Organic Letters, 2015, 17, 1292-1295.	2.4	53
65	Eco-friendly hydrodehalogenation of electron-rich aryl chlorides and fluorides by photochemical reaction. Green Chemistry, 2009, 11, 942.	4.6	52
66	Hammett Correlations in the Photosensitized Oxidation of 4-Substituted Thioanisoles. Journal of Organic Chemistry, 2004, 69, 928-935.	1.7	51
67	Photocatalystâ€free, Visible Light Driven, Gold Promoted Suzuki Synthesis of (Hetero)biaryls. ChemCatChem, 2017, 9, 4456-4459.	1.8	51
68	A Novel α-Arylation of Ketones, Aldehydes, and Esters via a Photoinduced SN1 Reaction through 4-Aminophenyl Cations. Journal of Organic Chemistry, 2003, 68, 4886-4893.	1.7	50
69	Visible Light Promoted Metal- and Photocatalyst-Free Synthesis of Allylarenes. Journal of Organic Chemistry, 2017, 82, 10687-10692.	1.7	50
70	Cationic arylation through photo(sensitised) decomposition of diazonium salts. Chemoselectivity of triplet phenyl cations. Chemical Communications, 2003, , 216-217.	2.2	49
71	A Visibleâ€Lightâ€Driven, Metalâ€free Route to Aromatic Amides via Radical Arylation of Isonitriles. Advanced Synthesis and Catalysis, 2017, 359, 3826-3830	2.1	49
72	Smooth Synthesis of Aryl- and Alkylanilines by Photoheterolysis of Haloanilines in the Presence of Aromatics and Alkenes. Organic Letters, 1999, 1, 1299-1301.	2.4	47

#	Article	IF	CITATIONS
73	Titanium dioxide photocatalysis of adamantane. Tetrahedron, 2003, 59, 6409-6414.	1.0	47
74	Hydrogen bonding properties of DMSO in ground-state formation and optical spectra of 3-hydroxyflavone anion. Chemical Physics Letters, 2008, 467, 88-93.	1.2	47
75	Intramolecular Electron Transfer in the Photochemistry of Some Nitrophenyldihydropyridines. Journal of Organic Chemistry, 2006, 71, 2037-2045.	1.7	46
76	Photochemistry in synthesis: Where, when, and why. Pure and Applied Chemistry, 2007, 79, 1929-1938.	0.9	45
77	Revealing Phenylium, Phenonium, Vinylenephenonium, and Benzenium Ions in Solution. Chemistry - A European Journal, 2008, 14, 1029-1039.	1.7	45
78	Photocatalytic Synthesis of Oxetane Derivatives by Selective Cĩ£¿H Activation. Advanced Synthesis and Catalysis, 2014, 356, 2781-2786.	2.1	45
79	Selective C(sp ³)â^H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie, 2018, 130, 4142-4146.	1.6	45
80	Easy Photochemical Preparation of 2-Dimethylaminophenylfurans, -Pyrroles and -Thiophenes. Tetrahedron, 2000, 56, 9383-9389.	1.0	44
81	Visible-Light-Driven Synthesis of Arylstannanes from Arylazo Sulfones. Organic Letters, 2019, 21, 5187-5191.	2.4	43
82	Decatungstate Photocatalyzed Benzylation of Alkenes with Alkylaromatics. Advanced Synthesis and Catalysis, 2013, 355, 2891-2899.	2.1	42
83	A Photochemical Route to 2-Substituted Benzo[<i>b</i>]furans. Journal of Organic Chemistry, 2012, 77, 6473-6479.	1.7	40
84	Visible Light Photocatalysis. A Green Choice?. Current Organic Chemistry, 2013, 17, 2366-2373.	0.9	40
85	Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 589-597.	1.7	40
86	Visible Light-Promoted Formation of C–B and C–S Bonds under Metal- and Photocatalyst-Free Conditions. Synthesis, 2019, 51, 1243-1252.	1.2	40
87	A Meta Effect in Organic Photochemistry? The Case of SN1 Reactions in Methoxyphenyl Derivatives. Journal of the American Chemical Society, 2007, 129, 5605-5611.	6.6	38
88	Hydrocarbon Activation. Synthesis of β-Cycloalkyl (Di)nitriles through Photosensitized Conjugate Radical Addition. Journal of Organic Chemistry, 2001, 66, 7320-7327.	1.7	37
89	A convenient route to 1,4-monoprotected dialdehydes, 1,4-ketoaldehydes, γ-lactols and γ-lactones through radical alkylation of α,β-unsaturated aldehydes in organic and organic-aqueous media. Tetrahedron, 2003, 59, 947-957.	1.0	37
90	Phenonium Ions from the Addition of Phenyl Cations to Alkenes. Photochemical Synthesis of (Rearranged) Aminoalkylanilines from Haloanilines in the Presence of Alkenes and Aminesâ€. Journal of Organic Chemistry, 2003, 68, 1067-1074.	1.7	37

#	Article	IF	CITATIONS
91	Convenient synthesis of electron-donating substituted benzonitriles by photolysis of phenyl halides and esters. Chemical Communications, 2006, , 3001.	2.2	37
92	Waterâ€Miscible Liquid Multiwalled Carbon Nanotubes. Advanced Materials, 2009, 21, 1761-1765.	11.1	37
93	Cooperative Polar/Steric Strategy in Achieving Siteâ€6elective Photocatalyzed C(sp ³)â^'H Functionalization. Chemistry - A European Journal, 2017, 23, 8615-8618.	1.7	37
94	Selectivity in the Reaction of Triplet Phenyl Cations. Journal of Organic Chemistry, 2010, 75, 315-323.	1.7	35
95	Regio―and Stereoselectivity in the Decatungstate Photocatalyzed Alkylation of Alkenes by Alkylcyclohexanes. Chemistry - A European Journal, 2009, 15, 7949-7957.	1.7	34
96	PEGylated carbon nanotubes: preparation, properties and applications. RSC Advances, 2013, 3, 13569.	1.7	34
97	Flow Synthesis of Substituted γâ€Lactones by Consecutive Photocatalytic/Reductive Reactions. Advanced Synthesis and Catalysis, 2014, 356, 753-758.	2.1	33
98	Sunlightâ€Driven Synthesis of Triarylethylenes (TAEs) via Metalâ€Free Mizoroki–Heckâ€Type Coupling. European Journal of Organic Chemistry, 2018, 2018, 5297-5303.	1.2	33
99	Dyedauxiliary Groups, an Emerging Approach in Organic Chemistry. The Case of Arylazo Sulfones. Journal of Organic Chemistry, 2020, 85, 12813-12822.	1.7	33
100	Reaction of singlet oxygen with some benzylic sulfides. Tetrahedron, 2006, 62, 10716-10723.	1.0	32
101	The β Effect of Silicon in Phenyl Cations. Journal of the American Chemical Society, 2007, 129, 15919-15926.	6.6	32
102	Photosensitized Electron Transfer Oxidation of Sulfides: A Steadyâ€ S tate Study. European Journal of Organic Chemistry, 2008, 2008, 2612-2620.	1.2	32
103	Cationic and radical intermediates in the acid photorelease from aryl sulfonates and phosphates. Photochemical and Photobiological Sciences, 2011, 10, 123-127.	1.6	32
104	Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation. ACS Sustainable Chemistry and Engineering, 2015, 3, 1860-1865.	3.2	32
105	Photosensitized oxidation of phenyl and tert-butyl sulfides. Photochemical and Photobiological Sciences, 2004, 3, 489.	1.6	31
106	Intramolecular Photoarylation of Alkenes by Phenyl Cations. Chemistry - A European Journal, 2006, 12, 3905-3915.	1.7	31
107	Predicting the UV spectrum of polyoxometalates by TDâ€ÐFT. Journal of Computational Chemistry, 2011, 32, 2983-2987.	1.5	31
108	Singlet/triplet phenyl cations and benzyne from the photodehalogenation of some silylated and stannylated phenyl halides. Chemical Science, 2012, 3, 1330.	3.7	31

#	Article	IF	CITATIONS
109	Photocatalyzed Site-Selective C(sp ³)–H Functionalization of Alkylpyridines at Non-Benzylic Positions. Organic Letters, 2017, 19, 6436-6439.	2.4	31
110	Photoinduced Electron Transfer Reactions in Heterocyclic Chemistry. Heterocycles, 2003, 60, 1921.	0.4	31
111	Diastereoselective photosensitised radical addition to fumaric acid derivatives bearing oxazolidine chiral auxiliaries. Tetrahedron: Asymmetry, 2000, 11, 1891-1906.	1.8	30
112	Photoinduced Three-Component Reaction: A Convenient Access to 3-Arylacetals or 3-Arylketals. Organic Letters, 2009, 11, 349-352.	2.4	30
113	Transition-Metal-Free Arylations via Photogenerated Triplet 4-Alkyl- and 4-Trimethylsilylphenyl Cations. Journal of Organic Chemistry, 2013, 78, 6016-6024.	1.7	30
114	A Photochemical Route to Benzo[<i>a</i>]carbazoles <i>via</i> Domino Elimination/Electrocyclization of 2â€Arylâ€3â€(1â€tosylalkyl)indoles. Advanced Synthesis and Catalysis, 2013, 355, 643-646.	2.1	30
115	Site-selectivity in TBADT-photocatalyzed C(sp ³)–H Functionalization of Saturated Alcohols and Alkanes. Chemistry Letters, 2018, 47, 207-209.	0.7	30
116	Visible Lightâ€Driven, Photocatalystâ€Free Arbuzovâ€Like Reaction via Arylazo Sulfones. Advanced Synthesis and Catalysis, 2019, 361, 5239-5244.	2.1	30
117	Unraveling the Thermal Isomerization Mechanisms of Heteroaryl Azoswitches: Phenylazoindoles as Case Study. Journal of Physical Chemistry A, 2019, 123, 1814-1823.	1.1	30
118	Metalâ€Free Synthesis of Unsymmetrical Aryl Selenides and Tellurides via Visible Lightâ€Đriven Activation of Arylazo Sulfones. European Journal of Organic Chemistry, 2020, 2020, 7358-7367.	1.2	30
119	Photoorganocatalysis in Organic Synthesis. Catalytic Science Series, 2019, , .	0.6	30
120	Aryl Cation and Carbene Intermediates in the Photodehalogenation of Chlorophenols. Chemistry - A European Journal, 2005, 11, 140-151.	1.7	29
121	Expeditious synthesis of bioactive allylphenol constituents of the genus Piper through a metal-free photoallylation procedure. Organic and Biomolecular Chemistry, 2005, 3, 2868.	1.5	29
122	Bio-based crotonic acid from polyhydroxybutyrate: synthesis and photocatalyzed hydroacylation. Green Chemistry, 2021, 23, 3420-3427.	4.6	29
123	Photochemical Alkylation of Ketene DithioacetalS,S-Dioxides. An Example of Captodative Olefin Functionalization. Journal of Organic Chemistry, 2000, 65, 297-303.	1.7	28
124	Electronic and EPR spectra of the species involved in [W10O32]4â^' photocatalysis. A relativistic DFT investigation. Physical Chemistry Chemical Physics, 2013, 15, 2890.	1.3	28
125	<i>Solar</i> ylations via 4-Aminophenyl Cations. Journal of Organic Chemistry, 2010, 75, 1271-1276.	1.7	27
126	Photochemical Reaction of N,N-Dimethyl-4-chloroaniline with Dienes: New Synthetic Paths via a Phenyl Cation. Chemistry - A European Journal, 2003, 9, 1549-1555.	1.7	26

#	Article	IF	CITATIONS
127	Sunlight decatungstate photoinduced trifluoromethylations of (hetero)aromatics and electron-poor olefins. Photochemical and Photobiological Sciences, 2017, 16, 1375-1380.	1.6	26
128	Photocatalytic oxidation of aliphatic and aromatic sulfides in the presence of silica adsorbed or zeolite-encapsulated 2,4,6-triphenyl(thia)pyrylium. Applied Catalysis B: Environmental, 2008, 79, 368-375.	10.8	25
129	Using Phenyl Cations as Probes for Establishing Electrophilicityâ^'Nucleophilicity Relations. Journal of Organic Chemistry, 2008, 73, 1282-1289.	1.7	25
130	Photocatalytic One-Pot Synthesis of Homoallyl Ketones via a Norrish Type I Reaction of Cyclopentanones. Journal of Organic Chemistry, 2015, 80, 9365-9369.	1.7	25
131	A Photocatalytic Meerwein Approach to the Synthesis of Isochromanones and Isochromenones. European Journal of Organic Chemistry, 2017, 2017, 2147-2153.	1.2	25
132	Increasing the Antibacterial Effect of Lysozyme by Immobilization on Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 3100-3106.	0.9	24
133	α, <i>n</i> â€Ðidehydrotoluenes by Photoactivation of (Chlorobenzyl)trimethylsilanes: An Alternative to Enyne–Allenes Cyclization. Angewandte Chemie - International Edition, 2012, 51, 8577-8580.	7.2	24
134	Benzyl Radicals from Toluene by Photosensitization with Naphthalene-1,4-dicarbonitrile – Benzylation and Hydroxymethylation of Unsaturated Compounds. European Journal of Organic Chemistry, 1999, 1999, 2137-2142.	1.2	23
135	Photochemical Arylation of Alkenols: Role of Intermediates and Synthetic Significance. European Journal of Organic Chemistry, 2008, 2008, 2240-2247.	1.2	23
136	Photochemical synthesis: Using light to build C–C bonds under mild conditions. Comptes Rendus Chimie, 2017, 20, 261-271.	0.2	23
137	Phenyl cation: A versatile intermediate. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 103-113.	2.0	23
138	Antimony–Oxo Porphyrins as Photocatalysts for Redox-Neutral C–H to C–C Bond Conversion. ACS Catalysis, 2020, 10, 9057-9064.	5.5	23
139	Radicals through Photoinduced Electron Transfer. Addition to Olefin and Addition to Olefin-Aromatic Substitution Reactions. Journal of Organic Chemistry, 1994, 59, 5614-5622.	1.7	22
140	Reductive cyclization of α-cyclopropylketones with alkynyl- and aryl-tethered substituents. Tetrahedron, 1998, 54, 6427-6444.	1.0	22
141	Titanium dioxide photocatalysis: An assessment of the environmental compatibility for the case of the functionalization of heterocyclics. Applied Catalysis B: Environmental, 2010, 99, 442-447.	10.8	22
142	Invitro study of multiwall carbon nanotubes (MWCNTs) with adsorbed mitoxantrone (MTO) as a drug delivery system to treat breast cancer. RSC Advances, 2014, 4, 18683-18693.	1.7	22
143	Aryl tosylates as non-ionic photoacid generators (PAGs): photochemistry and applications in cationic photopolymerizations. RSC Advances, 2015, 5, 33239-33248.	1.7	22
144	<i>N</i> -Aryltrifluoromethanesulfonimides as new trifluoromethylating agents for the (photo)catalyst-free functionalization of (hetero)aromatics. Chemical Communications, 2018, 54, 4144-4147.	2.2	22

#	Article	IF	CITATIONS
145	Aryldiazenyl Radicals from Arylazo Sulfones: Visible Lightâ€Driven Diazenylation of Enol Silyl Ethers. Advanced Synthesis and Catalysis, 2020, 362, 2150-2154.	2.1	22
146	Electron-Transfer-Photosensitized Conjugate Alkylation. Journal of Organic Chemistry, 1998, 63, 4026-4033.	1.7	21
147	Susceptibility to hydrolysis of phenylboronic pinacol esters at physiological pH. Open Chemistry, 2013, 11, 137-139.	1.0	21
148	Aryl Imidazylates and Aryl Sulfates As Electrophiles in Metal-Free ArS _N 1 Reactions. Journal of Organic Chemistry, 2014, 79, 11527-11533.	1.7	21
149	Substituent Effects on 3-Arylazoindole Photoswitches. Journal of Organic Chemistry, 2019, 84, 6565-6575.	1.7	21
150	Designing radical chemistry by visible light-promoted homolysis. Trends in Chemistry, 2022, 4, 305-317.	4.4	21
151	Photochemical conversion of 4-chloroaniline into 4-alkylanilines. Tetrahedron Letters, 2001, 42, 4271-4273.	0.7	20
152	Looking for a Paradigm for the Reactivity of Phenonium Ions. European Journal of Organic Chemistry, 2011, 2011, 3229-3237.	1.2	20
153	Photochemistry of <i>N</i> â€Arylsulfonimides: An Easily Available Class of Nonionic Photoacid Generators (PAGs). Chemistry - A European Journal, 2016, 22, 16998-17005.	1.7	20
154	Hydro/Deutero Deamination of Arylazo Sulfones under Metal- and (Photo)Catalyst-Free Conditions. Molecules, 2019, 24, 2164.	1.7	20
155	Scope and mechanism of the electron transfer photoinduced alkylation of an aromatic nitrile. Tetrahedron, 1994, 50, 6401-6410.	1.0	19
156	TiO2-photocatalyzed reactions of some benzylic donors. Canadian Journal of Chemistry, 2003, 81, 560-566.	0.6	19
157	The Photochemistry of 4-Chlorophenol in Water Revisited: The Effect of Cyclodextrins on Cation and Carbene Reactions. Chemistry - A European Journal, 2005, 11, 4274-4282.	1.7	19
158	Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review. Beilstein Journal of Organic Chemistry, 2020, 16, 1476-1488.	1.3	19
159	Photoinduced Electron and Energy Transfer in Aryldihydropyridines. Journal of Organic Chemistry, 2009, 74, 6615-6622.	1.7	18
160	Probing for a Leaving Group Effect on the Generation and Reactivity of Phenyl Cations. Journal of Organic Chemistry, 2012, 77, 3501-3507.	1.7	18
161	Flow Metalâ€Free Arï£;C Bond Formation <i>via</i> Photogenerated Phenyl Cations. Advanced Synthesis and Catalysis, 2016, 358, 1164-1172.	2.1	18
162	Metal-Free Trifluoromethylthiolation of Arylazo Sulfones. Journal of Organic Chemistry, 2021, 86, 1292-1299.	1.7	18

#	Article	IF	CITATIONS
163	The Contribution of Photochemistry to Green Chemistry. RSC Green Chemistry, 2009, , 80-111.	0.0	17
164	Oneâ€Step Decatungstateâ€Photomediated PEGylation of Singleâ€Walled Carbon Nanotubes. ChemPlusChem, 2012, 77, 210-216.	1.3	17
165	Metal-free arylations via photochemical activation of the Ar–OSO2R bond in aryl nonaflates. Green Chemistry, 2013, 15, 2704.	4.6	17
166	The Greenest Reagent in Organic Synthesis: Light. , 2008, , 173-189.		17
167	Smooth Metalâ€Free Photoinduced Preparation of Valuable 8â€Arylxanthines. European Journal of Organic Chemistry, 2020, 2020, 1448-1452.	1.2	16
168	Prebiotic chemistry: chemical evolution of organics on the primitive Earth under simulated prebiotic conditions. Photochemical and Photobiological Sciences, 2007, 6, 1210-1217.	1.6	15
169	Acetalization Allows the Photoheterolysis of the Ar–Cl Bond in Chlorobenzaldehydes and Chloroacetophenones. Journal of Organic Chemistry, 2012, 77, 9094-9101.	1.7	15
170	Activation of aliphatic C–H bonds by tetracyanobenzene photosensitization. A time-resolved and steady-state investigation. RSC Advances, 2012, 2, 1897.	1.7	15
171	Aryl Cation Chemistry as an Emerging Versatile Tool for Metal-Free Arylations. Synlett, 2008, 2008, 787-800.	1.0	14
172	Simultaneous Photografting of Two Organic Groups on a Gold Surface by using Arylazo Sulfones as Single Precursors. Langmuir, 2020, 36, 2786-2793.	1.6	14
173	Dyedauxiliary Group Strategy for the $\hat{l}\pm$ -Functionalization of Ketones and Esters. ACS Organic & Inorganic Au, 2021, 1, 68-71.	1.9	14
174	Limits to oxidation of organic substrates. SET oxidative processes of commonly used solvents as revealed through the photochemical reaction with 1,2,4,5- benzenetetracarbonitrile. Tetrahedron, 1996, 52, 1785-1796.	1.0	13
175	Participation of a heterolytic path in the photochemistry of chlorobenzene. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 140-144.	2.0	13
176	Folic Acidâ€Conjugated 4â€Aminoâ€Phenylboronate, a Boronâ€Containing Compound Designed for Boron Neutron Capture Therapy, is an Unexpected Agonist for Human Neutrophils and Platelets. Chemical Biology and Drug Design, 2014, 83, 532-540.	1.5	13
177	Photogenerated electrophilic radicals for the umpolung of enolate chemistry. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 46, 100387.	5.6	13
178	Alkylation of alkenes by radicals generated through photoinduced single electron transfer. Tetrahedron, 1995, 51, 859-864.	1.0	12
179	Characterizing Ionic Liquids as Reaction Media through a Chemical Probe. Chemistry - A European Journal, 2007, 13, 1834-1841.	1.7	12
180	Preparation of (substituted) picenes via solar light-induced Mallory photocyclization. RSC Advances, 2015, 5, 27470-27475.	1.7	12

#	Article	IF	CITATIONS
181	Conditions and Edges for the Photochemical Generation of Short-Lived Aryl Cations: A Computational Approach. Synlett, 2015, 26, 471-478.	1.0	12
182	Tandem energy transfer–electron transfer in the photosensitized alkylation of α,β-unsaturated ketones. Journal of Physical Organic Chemistry, 1997, 10, 777-780.	0.9	11
183	On the addition of 4-(N,N-dimethylamino)phenyl cation to norbornene. Organic and Biomolecular Chemistry, 2004, 2, 3490.	1.5	11
184	From Phenyl Chlorides to α, <i>n</i> -Didehydrotoluenes via Phenyl Cations. A CPCM–CASMP2 Investigation. Journal of Organic Chemistry, 2013, 78, 3814-3820.	1.7	11
185	(Co)oxidation/cyclization processes upon irradiation of triphenylamine. Tetrahedron Letters, 2014, 55, 2932-2935.	0.7	11
186	Methoxy-Substituted α, <i>n</i> -Didehydrotoluenes. Photochemical Generation and Polar vs Diradical Reactivity. Journal of the American Chemical Society, 2014, 136, 13874-13881.	6.6	11
187	Highlights in Organic Chemistry The Photo SN1 Reaction Via Phenyl Cation. Letters in Organic Chemistry, 2006, 3, 253-259.	0.2	10
188	Environmental Implications of the Surfactant Effect on the Photochemistry of (Substituted) 4â€Chlorophenols in Water. ChemSusChem, 2011, 4, 98-103.	3.6	10
189	Photogenerated α, <i>n</i> -Didehydrotoluenes from Chlorophenylacetic Acids at Physiological pH. Journal of Organic Chemistry, 2015, 80, 852-858.	1.7	10
190	Singlet vs Triplet Reactivity of Photogenerated α, <i>n</i> -Didehydrotoluenes. Journal of Organic Chemistry, 2017, 82, 6592-6603.	1.7	10
191	Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. Journal of Organic Chemistry, 2022, 87, 4863-4872.	1.7	10
192	Selective transformation of acetonides to orthoesters: an application of a photoinduced electron transfer process. Tetrahedron, 2001, 57, 555-561.	1.0	9
193	Photosensitized electron transfer oxidation of sulfides: structure and medium effect. Journal of Sulfur Chemistry, 2008, 29, 367-376.	1.0	9
194	Aromatic Aldehydes as Energyâ€Transfer Photoorganocatalysts. ChemCatChem, 2015, 7, 735-737.	1.8	9
195	Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ€Based Hybrid Materials. ChemPhotoChem, 2018, 2, 425-432.	1.5	9
196	Photochemistry as a Green Synthetic Method. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2008, , 279-293.	0.1	8
197	Competing Pathways in the Photogeneration of Didehydrotoluenes from (Trimethylsilylmethyl)aryl Sulfonates and Phosphates. Chemistry - A European Journal, 2014, 20, 17572-17578.	1.7	8
198	Multi-Step Continuous Flow Synthesis of β/γ-Substituted Ketones. ChemPhotoChem, 2018, 2, 847-850.	1.5	8

#	Article	IF	CITATIONS
199	Blue light driven free-radical polymerization using arylazo sulfones as initiators. Polymer Chemistry, 2021, 12, 5747-5751.	1.9	8
200	Photochemical Arylation Reactions by 4â€Chlorothioanisole. European Journal of Organic Chemistry, 2007, 2007, 4360-4365.	1.2	7
201	Derivatized humic acids modified gold electrode: Electrochemical characterization and analytical applications. Analytica Chimica Acta, 2007, 598, 58-64.	2.6	6
202	Application of Visible and Solar Light in Organic Synthesis. Lecture Notes in Quantum Chemistry II, 2016, , 281-342.	0.3	6
203	<i>N</i> â€Arylsulfonimides as Photoinitiators for Cationic Polymerization of Epoxy Solâ€Gel Materials. ChemistrySelect, 2017, 2, 3633-3636.	0.7	6
204	Design Consideration of Continuous-Flow Photoreactors. , 2017, , 1-36.		6
205	Photochemical carbon–sulfur bond cleavage in some alkyl and benzyl sulfides. Inorganica Chimica Acta, 2007, 360, 1230-1234.	1.2	5
206	Smooth photogeneration of α,n-didehydrotoluenes (DHTs). Pure and Applied Chemistry, 2013, 85, 1479-1486.	0.9	5
207	Spectroscopic characterization of photoaccumulated radical anions: a litmus test to evaluate the efficiency of photoinduced electron transfer (PET) processes. Beilstein Journal of Organic Chemistry, 2013, 9, 800-808.	1.3	5
208	Aromatic and Heteroaromatic Substitution by SRN1 and SN1 Reactions. , 0, , 319-351.		4
209	Photolabile Protecting Groups in Organic Synthesis. , 0, , 417-447.		4
210	A Detailed Study of the (Electro)chemical Behavior of Bis(trifluoromethanesulfonyl)imide Based Ionic Liquids at Different Purification Steps. Electroanalysis, 2013, 25, 1453-1460.	1.5	4
211	On the Route to the Photogeneration of Heteroaryl Cations. The Case of Halothiophenes. Journal of Organic Chemistry, 2016, 81, 6336-6342.	1.7	4
212	Photohomolysis and Photoheterolysis in Aryl Sulfonates and Aryl Phosphates. Chemistry - A European Journal, 2021, 27, 6315-6323.	1.7	4
213	Significance of TiO2 Photocatalysis for Green Chemistry. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	3
214	Sugar-Assisted Photogeneration of Didehydrotoluenes from Chlorobenzylphosphonic Acids. Journal of Organic Chemistry, 2017, 82, 12162-12172.	1.7	3
215	Aryl–Cl vs heteroatom–Si bond cleavage on the route to the photochemical generation of σ,Ĩ€-heterodiradicals. Photochemical and Photobiological Sciences, 2022, 21, 667-685.	1.6	3

#	Article	lF	CITATIONS
217	Photocatalyzed Formation of Heterocycles. Topics in Heterocyclic Chemistry, 2018, , 1-69.	0.2	2
218	Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates. Beilstein Journal of Organic Chemistry, 2020, 16, 3008-3014.	1.3	2
219	Photochemistry of Phosphate and Sulfonate Esters. , 2012, , 393-417.		2
220	CHAPTER 6. Colored Compounds for Eco-sustainable Visible-light Promoted Syntheses. , 2021, , 150-180.		2
221	Diradicals Photogeneration from Chloroarylâ€6ubstituted Carboxylic Acids. Chemistry - A European Journal, 2022, 28, .	1.7	2
222	Unraveling the Thermal Isomerization Mechanisms of Heteroaryl Azoswitches: Phenylazoindoles as Case Study. SSRN Electronic Journal, 0, , .	0.4	1
223	Photogenerated aryl mesylate and aryl diethyl phosphate radical cations. A time-resolved spectroscopy investigation New Journal of Chemistry, 0, , .	1.4	1
224	Photo-Cross-Coupling Reaction of Electron-Rich Aryl Chlorides and Aryl Esters with Alkynes: A Metal-Free Alkynylation ChemInform, 2006, 37, no.	0.1	0
225	Intermolecular Addition Reactions onto CC Multiple Bonds. , 0, , 67-94.		0
226	Formation of a Four-Membered Ring. , 0, , 137-169.		0
227	Formation of Six-Membered (and Larger) Rings. , 0, , 287-318.		0
228	Experiments with the titanium dioxide-ruthenium tris-bipyridine-nickel cyclam system for the photocatalytic reduction of CO2. Green Processing and Synthesis, 2013, 2, .	1.3	0
229	Search for a photoinduced (site-selective) cleavage of the Ar–Cl bond in dichloroanisoles. Photochemical and Photobiological Sciences, 2018, 17, 107-117.	1.6	0
230	2.6 Generation of Carbon-Centered Radicals by Photochemical Methods. , 2021, , .		0
231	A special issue dedicated to Angelo Albini on the occasion of his 75th birthday. Photochemical and Photobiological Sciences, 2022	1.6	0