
## Bruno A Marichal-Cancino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7297631/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The oncogenic lysophosphatidylinositol (LPI)/GPR55 signaling. Life Sciences, 2022, 301, 120596.                                                                                                                                                                      | 4.3 | 7         |
| 2  | 1-Boc-Piperidine-4-Carboxaldehyde Prevents Binge-Eating Behaviour and Anxiety in Rats. Pharmacology, 2021, 106, 305-315.                                                                                                                                             | 2.2 | 3         |
| 3  | The Periaqueductal Gray and Its Extended Participation in Drug Addiction Phenomena. Neuroscience Bulletin, 2021, 37, 1493-1509.                                                                                                                                      | 2.9 | 13        |
| 4  | The impact of CGRPergic monoclonal antibodies on prophylactic antimigraine therapy and potential adverse events. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 1223-1235.                                                                              | 3.3 | 1         |
| 5  | A critical review of the neurovascular nature of migraine and the main mechanisms of action of prophylactic antimigraine medications. Expert Review of Neurotherapeutics, 2021, 21, 1035-1050.                                                                       | 2.8 | 1         |
| 6  | Blockade of GPR55 in dorsal periaqueductal gray produces anxiety-like behaviors and evocates<br>defensive aggressive responses in alcohol-pre-exposed rats. Neuroscience Letters, 2021, 764, 136218.                                                                 | 2.1 | 7         |
| 7  | NPY-Y1 receptors in dorsal periaqueductal gray modulate anxiety, alcohol intake, and relapse in<br>Wistar rats. Pharmacology Biochemistry and Behavior, 2020, 199, 173071.                                                                                           | 2.9 | 10        |
| 8  | Advances in Neurobiology and Pharmacology of GPR12. Frontiers in Pharmacology, 2020, 11, 628.                                                                                                                                                                        | 3.5 | 14        |
| 9  | Potential Mechanisms Involved in Palmitoylethanolamide-Induced Vasodepressor Effects in Rats.<br>Journal of Vascular Research, 2020, 57, 152-163.                                                                                                                    | 1.4 | 14        |
| 10 | Monoaminergic Receptors as Modulators of the Perivascular Sympathetic and Sensory CGRPergic<br>Outflows. Current Neuropharmacology, 2020, 18, 790-808.                                                                                                               | 2.9 | 4         |
| 11 | The locus of Action of CGRPergic Monoclonal Antibodies Against Migraine: Peripheral Over Central Mechanisms. CNS and Neurological Disorders - Drug Targets, 2020, 19, 344-359.                                                                                       | 1.4 | 11        |
| 12 | Functional Characterization of the Prejunctional Receptors Mediating the Inhibition by Ergotamine of the Rat Perivascular Sensory Peptidergic Drive. ACS Chemical Neuroscience, 2019, 10, 3173-3182.                                                                 | 3.5 | 6         |
| 13 | <p>Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites<br/>synthesized using <em>R. mucilaginosa</em> UANL-001L exopolysaccharide as a capping<br/>agent</p> . International Journal of Nanomedicine, 2019, Volume 14, 2557-2571. | 6.7 | 34        |
| 14 | Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Current Neuropharmacology, 2019, 17, 947-960.                                                                                                | 2.9 | 25        |
| 15 | Side effects associated with current and prospective antimigraine pharmacotherapies. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 25-41.                                                                                                              | 3.3 | 74        |
| 16 | β-Adrenoceptor Blockade for Infantile Hemangioma Therapy: Do β <sub>3</sub> -Adrenoceptors<br>Play a Role?. Journal of Vascular Research, 2018, 55, 159-168.                                                                                                         | 1.4 | 16        |
| 17 | Dihydroergotamine inhibits the vasodepressor sensory CGRPergic outflow by prejunctional activation of α2-adrenoceptors and 5-HT1 receptors. Journal of Headache and Pain, 2018, 19, 40.                                                                              | 6.0 | 6         |
| 18 | Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Frontiers in Pharmacology, 2018, 9, 1496.                                                                                                    | 3.5 | 67        |

| #  | Article                                                                                                                                                                                                                                                                                                                              | IF           | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 19 | Possible role of hippocampal GPR55 in spatial learning and memory in rats. Acta Neurobiologiae<br>Experimentalis, 2018, 78, 41-50.                                                                                                                                                                                                   | 0.7          | 25        |
| 20 | Possible role of hippocampal GPR55 in spatial learning and memory in rats. Acta Neurobiologiae<br>Experimentalis, 2018, 78, 41-50.                                                                                                                                                                                                   | 0.7          | 13        |
| 21 | Olcegepant blocks neurogenic and nonâ€neurogenic CGRPergic vasodepressor responses and facilitates<br>noradrenergic vasopressor responses in pithed rats. British Journal of Pharmacology, 2017, 174,<br>2001-2014.                                                                                                                  | 5.4          | 20        |
| 22 | Advances in the Physiology of GPR55 in the Central Nervous System. Current Neuropharmacology, 2017, 15, 771-778.                                                                                                                                                                                                                     | 2.9          | 74        |
| 23 | Heteroreceptors Modulating CGRP Release at Neurovascular Junction: Potential Therapeutic<br>Implications on Some Vascular-Related Diseases. BioMed Research International, 2016, 2016, 1-17.                                                                                                                                         | 1.9          | 18        |
| 24 | Blockade of GPR55 in the dorsolateral striatum impairs performance of rats in a T-maze paradigm.<br>Behavioural Pharmacology, 2016, 27, 393-396.                                                                                                                                                                                     | 1.7          | 26        |
| 25 | Cardiovascular Alterations during the Interictal Period in Awake and Pithed Amygdalaâ€Kindled Rats.<br>Basic and Clinical Pharmacology and Toxicology, 2016, 119, 165-172.                                                                                                                                                           | 2.5          | 4         |
| 26 | mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system.<br>Neuroscience Letters, 2016, 631, 104-108.                                                                                                                                                                                   | 2.1          | 12        |
| 27 | Further evidence for the role of histamine H3, but not H1, H2 or H4, receptors in immepip-induced inhibition of the rat cardioaccelerator sympathetic outflow. European Journal of Pharmacology, 2016, 773, 85-92.                                                                                                                   | 3.5          | 4         |
| 28 | Pharmacological evidence that histamine H3 receptors inhibit the vasodepressor responses by selective stimulation of the rat perivascular sensory CGRPergic outflow. European Journal of Pharmacology, 2015, 754, 25-31.                                                                                                             | 3.5          | 10        |
| 29 | Specific Role of α <sub>2A</sub> ―and α <sub>2B</sub> ― but not α <sub>2C</sub> ― Adrenoceptor Subtyp<br>the Inhibition of the Vasopressor Sympathetic Outâ€flow in Diabetic Pithed Rats. Basic and Clinical<br>Pharmacology and Toxicology, 2015, 117, 31-38.                                                                       | es in<br>2.5 | 9         |
| 30 | Role of Preâ€Junctional <scp>CB</scp> <sub>1</sub> , But not <scp>CB</scp> <sub>2</sub> ,<br><scp>TRPV</scp> 1 or <scp>GPR</scp> 55 Receptors in Anandamideâ€Induced Inhibition of the<br>Vasodepressor Sensory <scp>CGRP</scp> ergic Outflow in Pithed Rats. Basic and Clinical<br>Pharmacology and Toxicology, 2014, 114, 240-247. | 2.5          | 10        |
| 31 | The Role of Pre-junctional D <sub>2</sub> -like Receptors Mediating Quinpirole-Induced Inhibition of the Vasodepressor Sensory CGRPergic Out-flow in Pithed Rats. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 174-180.                                                                                                | 2.5          | 8         |
| 32 | Predominant role of the dopamine D3 receptor subtype for mediating the quinpirole-induced<br>inhibition of the vasopressor sympathetic outflow in pithed rats. Naunyn-Schmiedeberg's Archives of<br>Pharmacology, 2013, 386, 393-403.                                                                                                | 3.0          | 8         |
| 33 | Analysis of anandamide- and lysophosphatidylinositol-induced inhibition of the vasopressor responses produced by sympathetic stimulation or noradrenaline in pithed rats. European Journal of Pharmacology, 2013, 721, 168-177.                                                                                                      | 3.5          | 23        |
| 34 | The role of dopamine <scp>D</scp> <sub>2</sub> , but not <scp>D</scp> <sub>3</sub> or<br><scp>D</scp> <sub>4</sub> , receptor subtypes, in quinpiroleâ€induced inhibition of the<br>cardioaccelerator sympathetic outflow in pithed rats. British Journal of Pharmacology, 2013, 170,<br>1102-1111.                                  | 5.4          | 13        |
| 35 | Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via CR127935- and rauwolscine-sensitive receptors. European Journal of Pharmacology, 2012, 692, 69-77.                                                                                                            | 3.5          | 11        |
| 36 | Pharmacological evidence that spinal α2C- and, to a lesser extent, α2A-adrenoceptors inhibit<br>capsaicin-induced vasodilatation in the canine external carotid circulation. European Journal of<br>Pharmacology, 2012, 683, 204-210.                                                                                                | 3.5          | 9         |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Dopamine Receptors Mediating Inhibition of the Sympathetic Vasopressor Outflow in Pithed Rats:<br>Pharmacological Correlation with the D2-like Type. Basic and Clinical Pharmacology and Toxicology,<br>2011, 109, 506-512. | 2.5 | 9         |