
## Gustav M Markkula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7297465/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effects of Cognitive Load on Driving Performance: The Cognitive Control Hypothesis. Human Factors, 2017, 59, 734-764.                                                                             | 3.5 | 145       |
| 2  | Toward Computational Simulations of Behavior During Automated Driving Takeovers: A Review of the Empirical and Modeling Literatures. Human Factors, 2019, 61, 642-688.                            | 3.5 | 142       |
| 3  | A farewell to brake reaction times? Kinematics-dependent brake response in naturalistic rear-end emergencies. Accident Analysis and Prevention, 2016, 95, 209-226.                                | 5.7 | 107       |
| 4  | Defining interactions: a conceptual framework for understanding interactive behaviour in human and automated road traffic. Theoretical Issues in Ergonomics Science, 2020, 21, 728-752.           | 1.8 | 95        |
| 5  | Coming back into the loop: Drivers' perceptual-motor performance in critical events after automated driving. Accident Analysis and Prevention, 2017, 108, 9-18.                                   | 5.7 | 84        |
| 6  | A Review of Near-Collision Driver Behavior Models. Human Factors, 2012, 54, 1117-1143.                                                                                                            | 3.5 | 77        |
| 7  | Driver Distraction Detection with a Camera Vision System. , 2007, , .                                                                                                                             |     | 73        |
| 8  | Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior. IEEE<br>Transactions on Intelligent Transportation Systems, 2021, 22, 5453-5472.                           | 8.0 | 62        |
| 9  | Towards the Automotive HMI of the Future: Overview of the AIDE-Integrated Project Results. IEEE<br>Transactions on Intelligent Transportation Systems, 2010, 11, 567-578.                         | 8.0 | 52        |
| 10 | Sustained sensorimotor control as intermittent decisions about prediction errors: computational framework and application to ground vehicle steering. Biological Cybernetics, 2018, 112, 181-207. | 1.3 | 45        |
| 11 | Great expectations: a predictive processing account of automobile driving. Theoretical Issues in Ergonomics Science, 2018, 19, 156-194.                                                           | 1.8 | 41        |
| 12 | Using perceptual cues for brake response to a lead vehicle: Comparing threshold and accumulator models of visual looming. Accident Analysis and Prevention, 2018, 118, 114-124.                   | 5.7 | 41        |
| 13 | Getting Back Into the Loop: The Perceptual-Motor Determinants of Successful Transitions out of Automated Driving. Human Factors, 2019, 61, 1037-1065.                                             | 3.5 | 38        |
| 14 | Learning to interpret novel eHMI: The effect of vehicle kinematics and eHMI familiarity on pedestrian'<br>crossing behavior. Journal of Safety Research, 2022, 80, 270-280.                       | 3.6 | 38        |
| 15 | Modeling driver control behavior in both routine and near-accident driving. Proceedings of the<br>Human Factors and Ergonomics Society, 2014, 58, 879-883.                                        | 0.3 | 35        |
| 16 | Understanding the Messages Conveyed by Automated Vehicles. , 2019, , .                                                                                                                            |     | 34        |
| 17 | Comparing and validating models of driver steering behaviour in collision avoidance and vehicle stabilisation. Vehicle System Dynamics, 2014, 52, 1658-1680.                                      | 3.7 | 32        |
| 18 | Models of Human Decision-Making as Tools for Estimating and Optimizing Impacts of Vehicle<br>Automation. Transportation Research Record, 2018, 2672, 153-163.                                     | 1.9 | 32        |

GUSTAV M MARKKULA

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Variable-Drift Diffusion Models of Pedestrian Road-Crossing Decisions. Computational Brain & Behavior, 2022, 5, 60-80.                                                                                               | 1.7 | 22        |
| 20 | Evidence for a fundamental property of steering. Proceedings of the Human Factors and Ergonomics Society, 2014, 58, 884-888.                                                                                         | 0.3 | 20        |
| 21 | How Do Drivers Respond to Silent Automation Failures? Driving Simulator Study and Comparison of Computational Driver Braking Models. Human Factors, 2020, 62, 1212-1229.                                             | 3.5 | 20        |
| 22 | Explaining unsafe pedestrian road crossing behaviours using a Psychophysics-based gap acceptance<br>model. Safety Science, 2022, 154, 105837.                                                                        | 4.9 | 19        |
| 23 | Driver behaviour in unexpected critical events and in repeated exposures – a comparison. European<br>Transport Research Review, 2014, 6, 51-60.                                                                      | 4.8 | 17        |
| 24 | Effects of experience and electronic stability control on low friction collision avoidance in a truck driving simulator. Accident Analysis and Prevention, 2013, 50, 1266-1277.                                      | 5.7 | 14        |
| 25 | A quantitative driver model of pre-crash brake onset and control. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 339-343.                                                                        | 0.3 | 14        |
| 26 | Computational modeling of driver pre-crash brake response, with and without off-road glances:<br>Parameterization using real-world crashes and near-crashes. Accident Analysis and Prevention, 2021,<br>163, 106433. | 5.7 | 14        |
| 27 | Using Driver Control Models to Understand and Evaluate Behavioral Validity of Driving Simulators.<br>IEEE Transactions on Human-Machine Systems, 2018, 48, 592-603.                                                  | 3.5 | 12        |
| 28 | Accumulation of continuously time-varying sensory evidence constrains neural and behavioral responses in human collision threat detection. PLoS Computational Biology, 2021, 17, e1009096.                           | 3.2 | 12        |
| 29 | Steering or braking avoidance response in SHRP2 rear-end crashes and near-crashes: A decision tree approach. Accident Analysis and Prevention, 2021, 154, 106055.                                                    | 5.7 | 10        |
| 30 | Simulating the effect of cognitive load on braking responses in lead vehicle braking scenarios. IET<br>Intelligent Transport Systems, 2018, 12, 427-433.                                                             | 3.0 | 9         |
| 31 | Modelling visual-vestibular integration and behavioural adaptation in the driving simulator.<br>Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66, 310-323.                                 | 3.7 | 9         |
| 32 | Drivers use active gaze to monitor waypoints during automated driving. Scientific Reports, 2021, 11, 263.                                                                                                            | 3.3 | 9         |
| 33 | Predicting takeover response to silent automated vehicle failures. PLoS ONE, 2020, 15, e0242825.                                                                                                                     | 2.5 | 8         |
| 34 | Comparing merging behaviors observed in naturalistic data with behaviors generated by a machine learned model. , 2021, , .                                                                                           |     | 6         |
| 35 | Answering questions about consciousness by modeling perception as covert behavior. Frontiers in Psychology, 2015, 6, 803.                                                                                            | 2.1 | 5         |
| 36 | Cognitive Driver Distraction Improves Straight Lane Keeping: A Cybernetic Control Theoretic<br>Explanation. IFAC-PapersOnLine, 2016, 49, 627-632.                                                                    | 0.9 | 4         |

GUSTAV M MARKKULA

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | How Do We Study Pedestrian Interaction with Automated Vehicles? Preliminary Findings from the European interACT Project. Lecture Notes in Mobility, 2019, , 21-33. | 0.2 | 4         |
| 38 | A Simulation Environment for Analysis and Optimization of Driver Models. Lecture Notes in Computer Science, 2011, , 453-462.                                       | 1.3 | 3         |
| 39 | Evidence Accumulation Account of Human Operators' Decisions in Intermittent Control During<br>Inverted Pendulum Balancing. , 2018, , .                             |     | 3         |
| 40 | Creating Kinematics-dependent Pedestrian Crossing Willingness Model When Interacting with Approaching Vehicle. , 2020, , .                                         |     | 1         |
| 41 | Improving yaw stability control in severe instabilities by means of a validated model of driver steering. , 2015, , .                                              |     | 0         |
| 42 | Evaluation of Vehicle Ride Height Adjustments Using a Driving Simulator. Vehicles, 2020, 2, 491-506.                                                               | 3.1 | 0         |
| 43 | Towards an Integrated Adaptive Automotive HMI for the Future. Lecture Notes in Computer Science, 2011, , 253-262.                                                  | 1.3 | 0         |
| 44 | Steering is initiated based on error accumulation Journal of Experimental Psychology: Human<br>Perception and Performance, 2022, 48, 64-76.                        | 0.9 | 0         |