Thomas Kietzmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7296832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ER-stress promotes VHL-independent degradation of hypoxia-inducible factors via FBXW1A/βTrCP. Redox Biology, 2022, 50, 102243.	9.0	7
2	The hypoxia response and nutritional peptides. Peptides, 2021, 138, 170507.	2.4	4
3	The glyco-redox interplay: Principles and consequences on the role of reactive oxygen species during protein glycosylation. Redox Biology, 2021, 42, 101888.	9.0	22
4	The Role of Hypoxia-Inducible Factor Post-Translational Modifications in Regulating Its Localisation, Stability, and Activity. International Journal of Molecular Sciences, 2021, 22, 268.	4.1	58
5	The air that we breeze: From †Noble' discoveries of a general oxygenâ€sensing principle to its clinical use. Acta Physiologica, 2020, 228, e13416.	3.8	1
6	Loss of USF2 promotes proliferation, migration and mitophagy in a redox-dependent manner. Redox Biology, 2020, 37, 101750.	9.0	16
7	Transcriptomic and Proteomic Analysis of Clear Cell Foci (CCF) in the Human Non-Cirrhotic Liver Identifies Several Differentially Expressed Genes and Proteins with Functions in Cancer Cell Biology and Glycogen Metabolism. Molecules, 2020, 25, 4141.	3.8	3
8	Analysis of GWAS-Derived Schizophrenia Genes for Links to Ischemia-Hypoxia Response of the Brain. Frontiers in Psychiatry, 2020, 11, 393.	2.6	25
9	Hypoxia-inducible erythropoietin expression: details matter. Haematologica, 2020, 105, 2704-2706.	3.5	13
10	DUBs, Hypoxia, and Cancer. Trends in Cancer, 2019, 5, 632-653.	7.4	125
11	NRF1 and NRF2 mRNA and Protein Expression Decrease Early during Melanoma Carcinogenesis: An Insight into Survival and MicroRNAs. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	16
12	Involvement of E3 Ligases and Deubiquitinases in the Control of HIF-α Subunit Abundance. Cells, 2019, 8, 598.	4.1	19
13	The Pro-Oncogenic Adaptor CIN85 Acts as an Inhibitory Binding Partner of Hypoxia-Inducible Factor Prolyl Hydroxylase 2. Cancer Research, 2019, 79, 4042-4056.	0.9	8
14	Liver Zonation in Health and Disease: Hypoxia and Hypoxia-Inducible Transcription Factors as Concert Masters. International Journal of Molecular Sciences, 2019, 20, 2347.	4.1	56
15	Cyclin-Dependent Kinase 5 (CDK5)-Mediated Phosphorylation of Upstream Stimulatory Factor 2 (USF2) Contributes to Carcinogenesis. Cancers, 2019, 11, 523.	3.7	17
16	The Circadian Clock Protein CRY1 Is a Negative Regulator of HIF-1α. IScience, 2019, 13, 284-304.	4.1	49
17	A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biology, 2019, 24, 101182.	9.0	25
18	Systemic inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 in mice protects from alcohol-induced fatty liver disease. Redox Biology, 2019, 22, 101145.	9.0	22

#	Article	IF	CITATIONS
19	Cellular Redox Compartments. Antioxidants and Redox Signaling, 2019, 30, 1-4.	5.4	10
20	Abnormal Golgi pH Homeostasis in Cancer Cells Impairs Apical Targeting of Carcinoembryonic Antigen by Inhibiting Its Glycosyl-Phosphatidylinositol Anchor-Mediated Association with Lipid Rafts. Antioxidants and Redox Signaling, 2019, 30, 5-21.	5.4	19
21	Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxidants and Redox Signaling, 2019, 30, 113-137.	5.4	32
22	USP28 Deficiency Promotes Breast and Liver Carcinogenesis as well as Tumor Angiogenesis in a HIF-independent Manner. Molecular Cancer Research, 2018, 16, 1000-1012.	3.4	23
23	Genomveräderungen–CRISPR/Cas9 als Methode der Wahl oder Qual?. BioSpektrum, 2018, 24, 701-703.	0.0	1
24	Hypoxia-Inducible Factor Prolyl 4-Hydroxylases and Metabolism. Trends in Molecular Medicine, 2018, 24, 1021-1035.	6.7	34
25	JAK2 and Endothelial Function: New Options for Anti-Thrombotic Therapies. Thrombosis and Haemostasis, 2018, 118, 1512-1514.	3.4	0
26	Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biology, 2017, 11, 622-630.	9.0	350
27	The mTOR and PP2A Pathways Regulate PHD2 Phosphorylation to Fine-Tune HIF1α Levels and Colorectal Cancer Cell Survival under Hypoxia. Cell Reports, 2017, 18, 1699-1712.	6.4	88
28	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
29	Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription. Redox Biology, 2017, 12, 1052-1061.	9.0	18
30	The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. British Journal of Pharmacology, 2017, 174, 1533-1554.	5.4	165
31	Trail (TNF-related apoptosis-inducing ligand) induces an inflammatory response in human adipocytes. Scientific Reports, 2017, 7, 5691.	3.3	27
32	Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget, 2017, 8, 9885-9898.	1.8	27
33	Resveratrol: beneficial or not? Opposite effects of resveratrol on hypoxia-dependent PAI-1 expression in tumour and primary cells. Thrombosis and Haemostasis, 2016, 115, 461-463.	3.4	3
34	Hypoxia-Inducible Factors (HIFs) and Phosphorylation: Impact on Stability, Localization, and Transactivity. Frontiers in Cell and Developmental Biology, 2016, 4, 11.	3.7	141
35	Differential transcriptional regulation of hypoxia-inducible factor-1α by arsenite under normoxia and hypoxia: involvement of Nrf2. Journal of Molecular Medicine, 2016, 94, 1153-1166.	3.9	27
36	Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell and Tissue Research, 2016, 365, 591-605.	2.9	223

#	Article	IF	CITATIONS
37	Urokinase is a negative modulator of Egfâ€dependent proliferation and motility in the two breast cancer cell lines MCFâ€7 and MDAâ€MBâ€231. Molecular Carcinogenesis, 2016, 55, 170-181.	2.7	12
38	The nuclear fraction of protein kinase CK2 binds to the upstream stimulatory factors (USFs) in the absence of DNA. Cellular Signalling, 2016, 28, 23-31.	3.6	7
39	Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radical Biology and Medicine, 2016, 94, 157-160.	2.9	48
40	<scp>PHD</scp> 1 regulates p53â€nediated colorectal cancer chemoresistance. EMBO Molecular Medicine, 2015, 7, 1350-1365.	6.9	43
41	Myocardial infarction in elderly patients: How to assess their bleeding risk?. Thrombosis and Haemostasis, 2015, 114, 869-871.	3.4	1
42	PAI-1 modulates cell migration in a LRP1-dependent manner via β-catenin and ERK1/2. Thrombosis and Haemostasis, 2015, 113, 988-998.	3.4	26
43	The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. Journal of Biological Chemistry, 2015, 290, 13840-13861.	3.4	61
44	Obesity and inflammation: reduced cytokine expression due to resveratrol in a human in vitro model of inflamed adipose tissue. Frontiers in Pharmacology, 2015, 6, 79.	3.5	42
45	Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology, 2015, 6, 183-197.	9.0	859
46	Protein kinases as switches for the function of upstream stimulatory factors: implications for tissue injury and cancer. Frontiers in Pharmacology, 2015, 6, 3.	3.5	26
47	Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biology, 2015, 6, 344-352.	9.0	197
48	Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis. Antioxidants and Redox Signaling, 2015, 23, 1059-1075.	5.4	23
49	Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?. Redox Biology, 2015, 6, 372-385.	9.0	279
50	Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β. Hypoxia (Auckland, N Z), 2014, 2, 35.	1.9	14
51	GSK3Î ² -Dependent Phosphorylation Alters DNA Binding, Transactivity and Half-Life of the Transcription Factor USF2. PLoS ONE, 2014, 9, e107914.	2.5	6
52	The upstream stimulatory factor USF1 is regulated by protein kinase CK2 phosphorylation. Cellular Signalling, 2014, 26, 2809-2817.	3.6	12
53	Manganese superoxide dismutase in carcinogenesis: friend or foe?. Biochemical Society Transactions, 2014, 42, 1012-1016.	3.4	13
54	Nutritional Countermeasures Targeting Reactive Oxygen Species in Cancer: From Mechanisms to Biomarkers and Clinical Evidence. Antioxidants and Redox Signaling, 2013, 19, 2157-2196.	5.4	84

#	Article	IF	CITATIONS
55	Resveratrol Suppresses PAI-1 Gene Expression in a Human <i>In Vitro</i> Model of Inflamed Adipose Tissue. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-13.	4.0	29
56	GSK-3β regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1α. Blood, 2012, 119, 1292-1301.	1.4	164
57	Increased levels of the HER1 adaptor protein Ruk l /CIN85 contribute to breast cancer malignancy. Carcinogenesis, 2012, 33, 1976-1984.	2.8	31
58	Early Determinants of Pulmonary Vascular Remodeling in Animal Models of Complex Congenital Heart Disease. Circulation, 2011, 123, 916-923.	1.6	11
59	FOXO4 Induces Human Plasminogen Activator Inhibitor-1 Gene Expressionviaan Indirect Mechanism by Modulating HIF-1α and CREB Levels. Antioxidants and Redox Signaling, 2010, 13, 413-424.	5.4	13
60	Reciprocal Regulation of Rac1 and PAK-1 by HIF-1α: A Positive-Feedback Loop Promoting Pulmonary Vascular Remodeling. Antioxidants and Redox Signaling, 2010, 13, 399-412.	5.4	61
61	The Antioxidant Quercetin Inhibits Cellular Proliferation <i>via</i> HIF-1-Dependent Induction of p21WAF. Antioxidants and Redox Signaling, 2010, 13, 437-448.	5.4	23
62	The adaptor protein Ruk/CIN85 activates plasminogen activator inhibitor-1 (PAI-1) expression via hypoxia-inducible factor-11±. Thrombosis and Haemostasis, 2010, 103, 901-909.	3.4	5
63	Intracellular Redox Compartments: Mechanisms and Significances. Antioxidants and Redox Signaling, 2010, 13, 395-398.	5.4	25
64	Phosphorylation of the von Hippel–Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1α mediated transcription. International Journal of Biochemistry and Cell Biology, 2010, 42, 1729-1735.	2.8	34
65	Hypoxia-Inducible Factors: Post-translational Crosstalk of Signaling Pathways. Methods in Molecular Biology, 2010, 647, 215-236.	0.9	20
66	The Hypoxia-Inducible Factor-2α Is Stabilized by Oxidative Stress Involving NOX4. Antioxidants and Redox Signaling, 2010, 13, 425-436.	5.4	81
67	Inhibition and Genetic Deficiency of p38 MAPK Up-Regulates Heme Oxygenase-1 Gene Expression via Nrf2. Journal of Immunology, 2009, 182, 7048-7057.	0.8	110
68	FoxO1 and HNF-4 Are Involved in Regulation of Hepatic Glucokinase Gene Expression by Resveratrol. Journal of Biological Chemistry, 2009, 284, 30783-30797.	3.4	64
69	Hypoxia-inducible factor 1α is up-regulated by oncostatin M and participates in oncostatin M signaling. Hepatology, 2009, 50, 253-260.	7.3	43
70	Kinases as Upstream Regulators of the HIF System: Their Emerging Potential as Anti-Cancer Drug Targets. Current Pharmaceutical Design, 2009, 15, 3867-3877.	1.9	35
71	Editorial [Hot topic: The Hypoxia-Inducible Factor (HIF) Pathway as a Target for Prevention and Treatment of Clinical Manifestations (Executive Editor: Thomas Kietzmann)]. Current Pharmaceutical Design, 2009, 15, 3837-3838.	1.9	4
72	Inhibition of phorbol ester-dependent peroxiredoxin I gene activation by lipopolysaccharide via phosphorylation of RelA/p65 at serine 276 in monocytes. Free Radical Biology and Medicine, 2008, 44, 699-710.	2.9	14

#	Article	IF	CITATIONS
73	An Atypical NF-κB-Regulated Pathway Mediates Phorbol Ester-Dependent Heme Oxygenase-1 Gene Activation in Monocytes. Journal of Immunology, 2008, 181, 4113-4123.	0.8	32
74	Transcriptional Regulation of Serine/Threonine Kinase-15 (STK15) Expression by Hypoxia and HIF-1. Molecular Biology of the Cell, 2008, 19, 3667-3675.	2.1	39
75	Vesicular localization of the rat ATP-binding cassette half-transporter rAbcb6. American Journal of Physiology - Cell Physiology, 2008, 294, C579-C590.	4.6	37
76	HIF-1α Signaling Upstream of NKX2.5 Is Required for Cardiac Development in Xenopus. Journal of Biological Chemistry, 2008, 283, 11841-11849.	3.4	34
77	Opposite Expression of the Antioxidant Heme Oxygenase-1 in Primary Cells and Tumor Cells: Regulation by Interaction of USF-2 and Fra-1. Antioxidants and Redox Signaling, 2008, 10, 1163-1174.	5.4	16
78	Metabolic, hormonal and environmental regulation of plasminogen activator inhibitor-1 (PAI-1) expression: Lessons from the liver. Thrombosis and Haemostasis, 2008, 100, 992-1006.	3.4	91
79	Plasminogen activator inhibitor-1 (PAI-1): A molecule at the crossroads to cell survival or cell death. Thrombosis and Haemostasis, 2008, 100, 965-968.	3.4	7
80	Metabolic, hormonal and environmental regulation of plasminogen activator inhibitor-1 (PAI-1) expression: lessons from the liver. Thrombosis and Haemostasis, 2008, 100, 992-1006.	3.4	25
81	Glycogen Synthase Kinase 3 Phosphorylates Hypoxia-Inducible Factor 1α and Mediates Its Destabilization in a VHL-Independent Manner. Molecular and Cellular Biology, 2007, 27, 3253-3265.	2.3	221
82	Superoxide and Derived Reactive Oxygen Species in the Regulation of Hypoxiaâ€Inducible Factors. Methods in Enzymology, 2007, 435, 421-446.	1.0	69
83	Reactive Oxygen Species Activate the HIF-1α Promoter Via a Functional NFκB Site. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 755-761.	2.4	565
84	Deficiency of manganese superoxide dismutase in hepatocytes disrupts zonated gene expression in mouse liver. Archives of Biochemistry and Biophysics, 2007, 462, 238-244.	3.0	24
85	Hypoxia Up-Regulates Hypoxia-Inducible Factor-1α Transcription by Involving Phosphatidylinositol 3-Kinase and Nuclear Factor IºB in Pulmonary Artery Smooth Muscle Cells. Molecular Biology of the Cell, 2007, 18, 4691-4697.	2.1	377
86	CREB binding to the hypoxia-inducible factor-1 responsive elements in the plasminogen activator inhibitor-1 promoter mediates the glucagon effect. Thrombosis and Haemostasis, 2007, 98, 296-303.	3.4	18
87	Oxygen as a regulator of serine dehydratase (SerDH) gene expression. Biopolymers and Cell, 2007, 23, 391-397.	0.4	1
88	NOX2 and NOX4 Mediate Proliferative Response in Endothelial Cells. Antioxidants and Redox Signaling, 2006, 8, 1473-1484.	5.4	221
89	The Endoplasmic Reticulum: Folding, Calcium Homeostasis, Signaling, and Redox Control. Antioxidants and Redox Signaling, 2006, 8, 1391-1418.	5.4	540
90	Regulation of rat heme oxygenase-1 expression by interleukin-6 via the Jak/STAT pathway in hepatocytes. Journal of Hepatology, 2006, 45, 72-80.	3.7	48

#	Article	IF	CITATIONS
91	The MAPK Pathway and HIF-1 Are Involved in the Induction of the Human PAI-1 Gene Expression by Insulin in the Human Hepatoma Cell Line HepG2. Annals of the New York Academy of Sciences, 2006, 1090, 355-367.	3.8	23
92	Oxygen: Modulator of Physiological and Pathophysiological Processes in the Liver. Zeitschrift Fur Gastroenterologie, 2006, 44, 67-76.	0.5	37
93	The role of hypoxia inducible factor-1 in cell metabolism – a possible target in cancer therapy. Expert Opinion on Therapeutic Targets, 2006, 10, 583-599.	3.4	14
94	Cell Type-dependent Regulation of the Hypoxia-responsive Plasminogen Activator Inhibitor-1 Gene by Upstream Stimulatory Factor-2. Journal of Biological Chemistry, 2006, 281, 2999-3005.	3.4	32
95	Subcellular localization of rat Abca5, a rat ATP-binding-cassette transporter expressed in Leydig cells, and characterization of its splice variant apparently encoding a half-transporter. Biochemical Journal, 2006, 393, 79-87.	3.7	28
96	Upregulation of heme oxygenase-1 gene by turpentine oil-induced localized inflammation: involvement of interleukin-6. Laboratory Investigation, 2005, 85, 376-387.	3.7	49
97	Thrombin activates the p21-activated kinase in pulmonary artery smooth muscle cells. Thrombosis and Haemostasis, 2005, 93, 1168-1175.	3.4	25
98	Transcriptional regulation of plasminogen activator inhibitor-1 expression by insulin-like growth factor-1 via MAP kinases and hypoxia-inducible factor-1 in HepG2 cells. Thrombosis and Haemostasis, 2005, 93, 1176-1184.	3.4	38
99	Heme Oxygenase-1 Gene Activation by the NAD(P)H Oxidase Inhibitor 4-(2-Aminoethyl) Benzenesulfonyl Fluoride via a Protein Kinase B, p38-dependent Signaling Pathway in Monocytes. Journal of Biological Chemistry, 2005, 280, 21820-21829.	3.4	50
100	Oxygen-Dependent Modulation of Insulin-Like Growth Factor Binding Protein Biosynthesis in Primary Cultures of Rat Hepatocytes. Endocrinology, 2005, 146, 5433-5443.	2.8	31
101	Glucokinase: old enzyme, new target. Expert Opinion on Therapeutic Patents, 2005, 15, 705-713.	5.0	14
102	Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Seminars in Cell and Developmental Biology, 2005, 16, 474-486.	5.0	260
103	Involvement of Intracellular Reactive Oxygen Species in the Control of Gene Expression by Oxygen. , 2004, , 341-360.		Ο
104	Oxygen-Dependent Regulation of Hepatic Glucose Metabolism. Methods in Enzymology, 2004, 381, 357-376.	1.0	3
105	The Transcription Factors HIF-1 and HNF-4 and the Coactivator p300 Are Involved in Insulin-regulated Glucokinase Gene Expression via the Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway. Journal of Biological Chemistry, 2004, 279, 2623-2631.	3.4	97
106	Enhanced Plasminogen Activator Inhibitor-1 Expression in Transgenic Mice with Hepatocyte-Specific Overexpression of Superoxide Dismutase or Glutathione Peroxidase. Antioxidants and Redox Signaling, 2004, 6, 721-728.	5.4	8
107	Modulation of glucokinase expression by hypoxia-inducible factor 1 and upstream stimulatory factor 2 in primary rat hepatocytes. Biological Chemistry, 2004, 385, 239-47.	2.5	24
108	Oxidative Stress and Hypoxia: Implications for Plasminogen Activator Inhibitor-1 Expression. Antioxidants and Redox Signaling, 2004, 6, 777-791.	5.4	44

#	Article	IF	CITATIONS
109	A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4302-4307.	7.1	160
110	Role of NF-kB and p38 MAP Kinase Signaling Pathways in the Lipopolysaccharide-Dependent Activation of Heme Oxygenase-1 Gene Expression. Antioxidants and Redox Signaling, 2004, 6, 802-810.	5.4	57
111	Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus. Brain Research, 2004, 1001, 133-142.	2.2	77
112	Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biological Chemistry, 2004, 385, 249-57.	2.5	108
113	Induction of plasminogen activator inhibitor I gene expression by intracellular calcium via hypoxia-inducible factor-1. Blood, 2004, 104, 3993-4001.	1.4	49
114	Role of NF-κB and p38 MAP Kinase Signaling Pathways in the Lipopolysaccharide-Dependent Activation of Heme Oxygenase-1 Gene Expression. Antioxidants and Redox Signaling, 2004, 6, 802-810.	5.4	43
115	Transcriptional Regulation of Heme Oxygenase-1 Gene Expression by MAP Kinases of the JNK and p38 Pathways in Primary Cultures of Rat Hepatocytes. Journal of Biological Chemistry, 2003, 278, 17927-17936.	3.4	177
116	Phorbol Ester-dependent Activation of Peroxiredoxin I Gene Expression via a Protein Kinase C, Ras, p38 Mitogen-activated Protein Kinase Signaling Pathway. Journal of Biological Chemistry, 2003, 278, 45419-45434.	3.4	44
117	Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood, 2003, 101, 907-914.	1.4	98
118	Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases. Thrombosis and Haemostasis, 2003, 89, 666-673.	3.4	51
119	Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Rac1. Thrombosis and Haemostasis, 2003, 89, 926-935.	3.4	67
120	Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases. Thrombosis and Haemostasis, 2003, 89, 666-73.	3.4	15
121	Activation of glucokinase gene expression by hepatic nuclear factor 4α in primary hepatocytes. Biochemical Journal, 2002, 365, 223-228.	3.7	42
122	Hypoxia-induced cell death and changes in hypoxia-inducible factor-1 activity in PC12 cells upon exposure to nerve growth factor. Molecular Brain Research, 2002, 104, 21-30.	2.3	18
123	Signaling cross-talk between hypoxia and glucose via hypoxia-inducible factor 1 and glucose response elements. Biochemical Pharmacology, 2002, 64, 903-911.	4.4	42
124	Redox Signaling through NADPH Oxidases: Involvement in Vascular Proliferation and Coagulation. Annals of the New York Academy of Sciences, 2002, 973, 505-507.	3.8	51
125	A role of upstrteam stimulatory factor-2a in regulation of plasminogen activator inhibitor-1 expression. Biopolymers and Cell, 2002, 18, 142-154.	0.4	0
126	Perivenous expression of the mRNA of the three hypoxia-inducible factor α-subunits, HIF1α, HIF2α and HIF3α, in rat liver. Biochemical Journal, 2001, 354, 531.	3.7	86

#	Article	IF	CITATIONS
127	Perivenous expression of the mRNA of the three hypoxia-inducible factor α-subunits, HIF1α, HIF2α and HIF3α, in rat liver. Biochemical Journal, 2001, 354, 531-537.	3.7	116
128	The upstream stimulatory factor-2a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxia-inducible factor-1 binding site. Blood, 2001, 97, 2657-2666.	1.4	47
129	Hypoxia and hypoxia-inducible factor modulated gene expression in brain: involvement in neuroprotection and cell death. European Archives of Psychiatry and Clinical Neuroscience, 2001, 251, 170-178.	3.2	64
130	Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1α (HIF-1α) underin vivohypoxia in rat brainstem. European Journal of Neuroscience, 2001, 14, 1981-1991.	2.6	43
131	Regulation of the Hypoxia-inducible Factor 1α by the Inflammatory Mediators Nitric Oxide and Tumor Necrosis Factor-α in Contrast to Desferroxamine and Phenylarsine Oxide. Journal of Biological Chemistry, 2001, 276, 39805-39811.	3.4	194
132	Cross-Talk between the Signals Hypoxia and Glucose at the Glucose Response Element of the L-Type Pyruvate Kinase Gene*. Endocrinology, 2001, 142, 2707-2718.	2.8	32
133	Perivenous localization of insulin receptor protein in rat liver, and regulation of its expression by glucose and oxygen in hepatocyte cultures. Biochemical Journal, 2000, 348, 433.	3.7	5
134	Physiological oxygen tensions modulate expression of the mdr1b multidrug-resistance gene in primary rat hepatocyte cultures. Biochemical Journal, 2000, 350, 443.	3.7	23
135	Perivenous localization of insulin receptor protein in rat liver, and regulation of its expression by glucose and oxygen in hepatocyte cultures. Biochemical Journal, 2000, 348, 433-438.	3.7	21
136	Physiological oxygen tensions modulate expression of the mdr1b multidrug-resistance gene in primary rat hepatocyte cultures. Biochemical Journal, 2000, 350, 443-451.	3.7	28
137	Oxygen: Modulator of metabolic zonation and disease of the liver. Hepatology, 2000, 31, 255-260.	7.3	390
138	Transcriptional Induction of Heme Oxygenase-1 Gene Expression by Okadaic Acid in Primary Rat Hepatocyte Cultures. Molecular Pharmacology, 2000, 57, 610-618.	2.3	27
139	Oxygen Radicals as Messengers in Oxygen-Dependent Gene Expression. Physiology, 2000, 15, 202-208.	3.1	26
140	Serum-Free, Long-Term Cultures of Human Hepatocytes: Maintenance of Cell Morphology, Transcription Factors, and Liver-Specific Functions. Biochemical and Biophysical Research Communications, 2000, 269, 46-53.	2.1	102
141	Induction of the Plasminogen Activator Inhibitor-1 Gene Expression by Mild Hypoxia Via a Hypoxia Response Element Binding the Hypoxia-Inducible Factor-1 in Rat Hepatocytes. Blood, 1999, 94, 4177-4185.	1.4	235
142	Identification of an oxygen-responsive element in the 5â€2-flanking sequence of the rat cytosolic phosphoenolpyruvate carboxykinase-1 gene, modulating its glucagon-dependent activation. Biochemical Journal, 1999, 339, 563-569.	3.7	19
143	Identification of an oxygen-responsive element in the 5′-flanking sequence of the rat cytosolic phosphoenolpyruvate carboxykinase-1 gene, modulating its glucagon-dependent activation. Biochemical Journal, 1999, 339, 563.	3.7	6
144	Induction of the Plasminogen Activator Inhibitor-1 Gene Expression by Mild Hypoxia Via a Hypoxia Response Element Binding the Hypoxia-Inducible Factor-1 in Rat Hepatocytes. Blood, 1999, 94, 4177-4185.	1.4	12

#	Article	IF	CITATIONS
145	Periportal localization of glucagon receptor mRNA in rat liver and regulation of its expression by glucose and oxygen in hepatocyte cultures. FEBS Letters, 1998, 421, 136-140.	2.8	39
146	Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochemical Journal, 1998, 334, 141-146.	3.7	121
147	Involvement of a local Fenton reaction in the reciprocal modulation by O2 of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene and the insulin-dependent activation of the glucokinase gene in rat hepatocytes. Biochemical Journal, 1998, 335, 425-432.	3.7	39
148	The Rat Heme Oxygenase-1 Gene Is Transcriptionally Induced via the Protein Kinase A Signaling Pathway in Rat Hepatocyte Cultures. Molecular Pharmacology, 1998, 53, 483-491.	2.3	76
149	Arterial oxygen partial pressures reduce the insulin-dependent induction of the perivenously located glucokinase in rat hepatocyte cultures: mimicry of arterial oxygen pressures by H2O2. Biochemical Journal, 1997, 321, 17-20.	3.7	63
150	Role of oxygen in the zonation of carbohydrate metabolism and gene expression in liver. Kidney International, 1997, 51, 402-412.	5.2	88
151	Diminution of the O2 responsiveness of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocytes by long-term culture at venous PO2. Kidney International, 1997, 51, 542-547.	5.2	8
152	Regulation of the gluconeogenic phosphoenolpyruvate carboxykinase and the glycolytic aldolase A gene expression by O2in rat hepatocyte cultures. Involvement of hydrogen peroxide as mediator in the response to O2. FEBS Letters, 1996, 388, 228-232.	2.8	40
153	Modulation of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene by oxygen in rat hepatocyte cultures Evidence for a heme protein as oxygen sensor. FEBS Letters, 1992, 311, 251-255.	2.8	47
154	The Circadian Clock Protein CRY1 Is a Negative Regulator of HIF-11. SSRN Electronic Journal, O, , .	0.4	0