Mark R Looney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7296389/publications.pdf

Version: 2024-02-01

		81900	4	18315
91	9,581	39		88
papers	citations	h-index		g-index
101	101	101		14752
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Transfusion-Related Acute Lung Injury: 36 years of Progress (1985-2021). Annals of the American Thoracic Society, 2022, , .	3.2	5
2	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	2.9	82
3	GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell, 2022, 185, 815-830.e19.	28.9	52
4	ADAM8 signaling drives neutrophil migration and ARDS severity. JCI Insight, 2022, 7, .	5.0	18
5	CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science, 2022, 375, eabi5965.	12.6	42
6	Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. Journal of Clinical Investigation, 2022, 132, .	8.2	28
7	New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 284-308.	2.9	9
8	Formaldehyde-induced hematopoietic stem and progenitor cell toxicity in mouse lung and nose. Archives of Toxicology, 2021, 95, 693-701.	4.2	11
9	Lung megakaryocytes are immune modulatory cells. Journal of Clinical Investigation, 2021, 131, .	8.2	96
10	Global absence and targeting of protective immune states in severe COVID-19. Nature, 2021, 591, 124-130.	27.8	206
11			
	Chewing the fat on TRALI. Blood, 2021, 137, 586-587.	1.4	1
12	Chewing the fat on TRALI. Blood, 2021, 137, 586-587. Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury. Journal of Clinical Investigation, 2021, 131, .	8.2	32
12	Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury. Journal of		
	Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury. Journal of Clinical Investigation, 2021, 131, . Î ² 2M Signals Monocytes Through Non-Canonical TGFÎ ² Receptor Signal Transduction. Circulation	8.2	32
13	Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury. Journal of Clinical Investigation, 2021, 131, . β2M Signals Monocytes Through Non-Canonical TGFβ Receptor Signal Transduction. Circulation Research, 2021, 128, 655-669. Hypoimmune induced pluripotent stem cell–derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice. Proceedings of the National Academy of	8.2 4.5	32
13	Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury. Journal of Clinical Investigation, 2021, 131, . β2M Signals Monocytes Through Non-Canonical TGFβ Receptor Signal Transduction. Circulation Research, 2021, 128, 655-669. Hypoimmune induced pluripotent stem cell–derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET. ACS Central	8.2 4.5 7.1	32 9 20
13 14 15	Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury. Journal of Clinical Investigation, 2021, 131, . β2M Signals Monocytes Through Non-Canonical TGFβ Receptor Signal Transduction. Circulation Research, 2021, 128, 655-669. Hypoimmune induced pluripotent stem cell–derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET. ACS Central Science, 2021, 7, 1638-1649.	8.2 4.5 7.1	32 9 20 30

#	Article	IF	CITATIONS
19	Targeting potential drivers of COVID-19: Neutrophil extracellular traps. Journal of Experimental Medicine, 2020, 217, .	8.5	1,193
20	Endogenous DEL-1 restrains melanoma lung metastasis by limiting myeloid cell–associated lung inflammation. Science Advances, 2020, 6, .	10.3	18
21	Animal models of mechanisms of <scp>SARSâ€CoVâ€2</scp> infection and <scp>COVIDâ€19</scp> pathology. British Journal of Pharmacology, 2020, 177, 4851-4865.	5.4	158
22	Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation. Journal of Clinical Investigation, 2020, 130, 2041-2053.	8.2	44
23	Complement activation on endothelium initiates antibody-mediated acute lung injury. Journal of Clinical Investigation, 2020, 130, 5909-5923.	8.2	32
24	Modulating Pathogenesis with Mobile-CRISPRi. Journal of Bacteriology, 2019, 201, .	2.2	31
25	Platelet Biogenesis in the Lung Circulation. Physiology, 2019, 34, 392-401.	3.1	45
26	An update of the transfusion-related acute lung injury (TRALI) definition. Transfusion Clinique Et Biologique, 2019, 26, 354-356.	0.4	7
27	A consensus redefinition of transfusionâ€related acute lung injury. Transfusion, 2019, 59, 2465-2476.	1.6	120
28	Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1076-1085.	5.6	165
29	LPS-induced Lung Platelet Recruitment Occurs Independently from Neutrophils, PSGL-1, and P-Selectin. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 232-243.	2.9	38
30	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	28.9	6
31	Contemporary Risk Factors and Outcomes of Transfusion-Associated Circulatory Overload*. Critical Care Medicine, 2018, 46, 577-585.	0.9	48
32	Advances in Clinical and Basic Science of Coagulation: Illustrated abstracts of the 9th Chapel Hill Symposium on Hemostasis. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 407-428.	2.3	5
33	Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight, $2018, 3,$	5.0	315
34	Whither the Pulmonary Ward Attending? Preserving Subspecialty Exposure in United States Internal Medicine Residency Training. Annals of the American Thoracic Society, 2017, 14, 565-568.	3.2	6
35	The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Science Immunology, 2017, 2, .	11.9	153
36	Prevention or Treatment of Ards With Aspirin. Shock, 2017, 47, 13-21.	2.1	67

3

#	Article	IF	CITATIONS
37	The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 2017, 544, 105-109.	27.8	805
38	Proposed revised nomenclature for transfusionâ€related acute lung injury. Transfusion, 2017, 57, 709-713.	1.6	16
39	Neutralizing Extracellular Histones in Acute Respiratory Distress Syndrome. A New Role for an Endogenous Pathway. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 122-124.	5 . 6	17
40	Mirasol pathogen reduction technology treatment of human whole blood does not induce acute lung injury in mice. PLoS ONE, 2017, 12, e0178725.	2.5	5
41	Lung Imaging in Animal Models. Respiratory Medicine, 2017, , 107-132.	0.1	2
42	Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop. JCI Insight, 2017, 2, .	5.0	55
43	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	8.5	108
44	Current concepts in <scp>TRALI</scp> pathogenesis. ISBT Science Series, 2016, 11, 206-210.	1.1	3
45	Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nature Communications, 2016, 7, 13464.	12.8	143
46	Inhibiting Integrin αvβ5 Reduces Ischemia–Reperfusion Injury in an Orthotopic Lung Transplant Model in Mice. American Journal of Transplantation, 2016, 16, 1306-1311.	4.7	12
47	Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature, 2016, 531, 513-517.	27.8	348
48	Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight, 2016, 1, e86704.	5.0	192
49	Dyspnea and Pulmonary Hypertension with Diffuse Centrilobular Nodules. Annals of the American Thoracic Society, 2016, 13, 1858-1860.	3.2	1
50	Mast Cells Present Protrusions into Blood Vessels upon Tracheal Allergen Challenge in Mice. PLoS ONE, 2015, 10, e0118513.	2.5	12
51	Transfusion of Human Platelets Treated with Mirasol Pathogen Reduction Technology Does Not Induce Acute Lung Injury in Mice. PLoS ONE, 2015, 10, e0133022.	2.5	9
52	Recipient clinical risk factors predominate in possible transfusionâ€related acute lung injury. Transfusion, 2015, 55, 947-952.	1.6	40
53	Reply: Neutrophil Extracellular Traps in Primary Graft Dysfunction after Lung Transplantation. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1089-1089.	5.6	1
54	Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 2015, 517, 621-625.	27.8	562

#	Article	IF	Citations
55	Neutrophil Extracellular Traps Are Pathogenic in Primary Graft Dysfunction after Lung Transplantation. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 455-463.	5.6	187
56	Non-invasive Intratracheal Instillation in Mice. Bio-protocol, 2015, 5, .	0.4	17
57	Two-event Transfusion-related Acute Lung Injury Mouse Model. Bio-protocol, 2015, 5, .	0.4	0
58	Live Imaging of the Lung. Annual Review of Physiology, 2014, 76, 431-445.	13.1	59
59	Prospective Study on the Clinical Course and Outcomes in Transfusion-Related Acute Lung Injury*. Critical Care Medicine, 2014, 42, 1676-1687.	0.9	62
60	Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood, 2014, 124, 2625-2634.	1.4	164
61	The spatiotemporal cellular dynamics of lung immunity. Trends in Immunology, 2014, 35, 379-386.	6.8	22
62	Mast cells in a murine lung ischemia-reperfusion model of primary graft dysfunction. Respiratory Research, 2014, 15, 95.	3.6	9
63	162. Cytokine, 2013, 63, 281.	3.2	5
64	Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. Journal of Experimental Medicine, 2012, 209, 1183-1199.	8.5	162
65	Fresh and Stored Red Blood Cell Transfusion Equivalently Induce Subclinical Pulmonary Gas Exchange Deficit in Normal Humans. Anesthesia and Analgesia, 2012, 114, 511-519.	2.2	42
66	Transfusion-related acute lung injury: incidence and risk factors. Blood, 2012, 119, 1757-1767.	1.4	493
67	Live Imaging of the Lung. , 2012, Chapter 12, Unit12.28.		34
68	Transfusion Reactions. Critical Care Clinics, 2012, 28, 363-372.	2.6	51
69	Platelet-neutrophil Interactions as a Target for Prevention and Treatment of Transfusion- related Acute Lung Injury. Current Pharmaceutical Design, 2012, 18, 3260-3266.	1.9	40
70	Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. Journal of Clinical Investigation, 2012, 122, 2661-2671.	8.2	838
71	Reducing Noninfectious Risks of Blood Transfusion. Anesthesiology, 2011, 115, 635-649.	2.5	131
72	Stabilized imaging of immune surveillance in the mouse lung. Nature Methods, 2011, 8, 91-96.	19.0	337

#	Article	IF	CITATIONS
73	Experimental Models of Transfusion-Related Acute Lung Injury. Transfusion Medicine Reviews, 2011, 25, 1-11.	2.0	33
74	Role of CFTR expressed by neutrophils in modulating acute lung inflammation and injury in mice. Inflammation Research, 2011, 60, 619-632.	4.0	55
75	Pathophysiology of transfusion-related acute lung injury. Current Opinion in Hematology, 2010, 17, 418-423.	2.5	48
76	Receptor for advanced glycation end-products (RAGE) is an indicator of direct lung injury in models of experimental lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1-L5.	2.9	77
77	Role of coagulation pathways and treatment with activated protein C in hyperoxic lung injury. Thorax, 2009, 64, 114-120.	5.6	14
78	Neutrophil sandwiches injure the microcirculation. Nature Medicine, 2009, 15, 364-366.	30.7	30
79	Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. Journal of Clinical Investigation, 2009, 119, 3450-61.	8.2	342
80	CD47 Deficiency Protects Mice from Lipopolysaccharide-Induced Acute Lung Injury and <i>Escherichia coli</i> Pneumonia. Journal of Immunology, 2008, 180, 6947-6953.	0.8	70
81	Acute lung injury after blood product transfusion: Are the times changing?*. Critical Care Medicine, 2008, 36, 1968-1970.	0.9	2
82	The role of protein C in sepsis. Current Infectious Disease Reports, 2007, 3, 413-418.	3.0	8
83	Newly Recognized Causes of Acute Lung Injury: Transfusion of Blood Products, Severe Acute Respiratory Syndrome, and Avian Influenza. Clinics in Chest Medicine, 2006, 27, 591-600.	2.1	11
84	Bench-to-bedside review: the role of activated protein C in maintaining endothelial tight junction function and its relationship to organ injury. Critical Care, 2006, 10, 239.	5.8	28
85	Animal models of transfusion-related acute lung injury. Critical Care Medicine, 2006, 34, S132-S136.	0.9	39
86	Neutrophils and their Fc receptors are essential in a mouse model of transfusion-related acute lung injury. Journal of Clinical Investigation, 2006, 116, 1615-1623.	8.2	273
87	Decreased expression of both the $\hat{l}\pm 1$ - and $\hat{l}\pm 2$ -subunits of the Na-K-ATPase reduces maximal alveolar epithelial fluid clearance. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L104-L110.	2.9	32
88	DIRECT VISUAL INSTILLATION AS A METHOD FOR EFFICIENT DELIVERY OF FLUID INTO THE DISTAL AIRSPACES OF ANESTHETIZED MICE. Experimental Lung Research, 2004, 30, 479-493.	1.2	59
89	Transfusion-Related Acute Lung Injury. Chest, 2004, 126, 249-258.	0.8	258
90	Synaptophysin immunoreactivity in temporal lobe epilepsy-associated hippocampal sclerosis. Acta Neuropathologica, 1999, 98, 179-185.	7.7	19

-	#	Article	IF	CITATIONS
	91	Synaptophysin immunohistochemistry densitometry measurement in resected human hippocampus: implication for the etiology of hippocampal sclerosis. Epilepsy Research, 1998, 32, 335-344.	1.6	7