Gabriel Paës

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7295462/publications.pdf

Version: 2024-02-01

43 papers 2,022 citations

361413 20 h-index 276875 41 g-index

44 all docs 44 docs citations

44 times ranked 2525 citing authors

#	Article	IF	CITATIONS
1	Real-time imaging of enzymatic degradation of pretreated maize internodes reveals different cell types have different profiles. Bioresource Technology, 2022, 353, 127140.	9.6	2
2	Evaluating polymer interplay after hot water pretreatment to investigate maize stem internode recalcitrance. Biotechnology for Biofuels, 2021, 14, 164.	6.2	15
3	Flax shives-PBAT processing into 3D printed fluorescent materials with potential sensor functionalities. Industrial Crops and Products, 2021, 167, 113482.	5.2	6
4	Fluorescence Lifetime Imaging as an <i>In Situ</i> and Label-Free Readout for the Chemical Composition of Lignin. ACS Sustainable Chemistry and Engineering, 2021, 9, 17381-17392.	6.7	9
5	Three-Dimensional Imaging of Plant Cell Wall Deconstruction Using Fluorescence Confocal Microscopy. Sustainable Chemistry, 2020, 1, 75-85.	4.7	1
6	Measuring Interactions between Fluorescent Probes and Lignin in Plant Sections by sFLIM Based on Native Autofluorescence. Journal of Visualized Experiments, 2020, , .	0.3	1
7	Editorial: From Biomass to Advanced Bio-Based Chemicals & Materials: A Multidisciplinary Perspective. Frontiers in Chemistry, 2020, 8, 131.	3.6	6
8	Enzymes to unravel bioproducts architecture. Biotechnology Advances, 2020, 41, 107546.	11.7	12
9	Multimodal characterization of acid-pretreated poplar reveals spectral and structural parameters strongly correlate with saccharification. Bioresource Technology, 2019, 293, 122015.	9.6	10
10	Fluorescence Lifetime Imaging of Plant Cell Walls. Methods in Molecular Biology, 2019, 1992, 77-82.	0.9	2
11	Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Industrial Crops and Products, 2019, 135, 246-250.	5.2	52
12	Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance. Biotechnology for Biofuels, 2019, 12, 76.	6.2	25
13	Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Frontiers in Chemistry, 2019, 7, 874.	3.6	424
14	Ferulic acid derivatives used as biobased powders for a convenient plasticization of polylactic acid in continuous hot-melt process. European Polymer Journal, 2019, 110, 293-300.	5.4	15
15	Real Time and Quantitative Imaging of Lignocellulosic Films Hydrolysis by Atomic Force Microscopy Reveals Lignin Recalcitrance at Nanoscale. Biomacromolecules, 2019, 20, 515-527.	5.4	11
16	Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnology for Biofuels, 2018, 11, 52.	6.2	59
17	Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification. Biotechnology for Biofuels, 2018, 11, 271.	6.2	11
18	FRET-SLiM on native autofluorescence: a fast and reliable method to study interactions between fluorescent probes and lignin in plant cell wall. Plant Methods, 2018, 14, 74.	4.3	11

#	Article	IF	CITATIONS
19	Fluorescence techniques can reveal cell wall organization and predict saccharification in pretreated wood biomass. Industrial Crops and Products, 2018, 123, 84-92.	5.2	38
20	Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy. Plants, 2018, 7, 11.	3.5	16
21	Bioinspired Assemblies of Plant Cell Walls for Measuring Protein-Carbohydrate Interactions by FRAP. Methods in Molecular Biology, 2017, 1588, 169-179.	0.9	1
22	Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnology for Biofuels, 2017, 10, 36.	6.2	214
23	Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes. Biotechnology for Biofuels, 2017, 10, 15.	6.2	26
24	Exploring the microstructure of natural fibre composites by confocal Raman imaging and image analysis. Composites Part A: Applied Science and Manufacturing, 2017, 94, 32-40.	7.6	21
25	Testing scientific models using Qualitative Reasoning: Application to cellulose hydrolysis. Scientific Reports, 2017, 7, 14122.	3.3	2
26	Microstructural and Chemical Approach To Highlight How a Simple Methyl Group Affects the Mechanical Properties of a Natural Fibers Composite. ACS Sustainable Chemistry and Engineering, 2017, 5, 10352-10360.	6.7	2
27	Seeing biomass recalcitrance through fluorescence. Scientific Reports, 2017, 7, 8838.	3.3	42
28	Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Advances, 2017, 7, 34638-34654.	3.6	86
29	Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type. Scientific Reports, 2017, 7, 17792.	3.3	21
30	Investigation of the binding properties of a multi-modular GH45 cellulase using bioinspired model assemblies. Biotechnology for Biofuels, 2016, 9, 12.	6.2	22
31	Bioinspired assemblies of plant cell wall polymers unravel the affinity properties of carbohydrate-binding modules. Soft Matter, 2015, 11, 6586-6594.	2.7	9
32	Fluorescent Probes for Exploring Plant Cell Wall Deconstruction: A Review. Molecules, 2014, 19, 9380-9402.	3.8	43
33	Modeling Progression of Fluorescent Probes in Bioinspired Lignocellulosic Assemblies. Biomacromolecules, 2013, 14, 2196-2205.	5.4	14
34	THUMB-LOOPS UP FOR CATALYSIS: A STRUCTURE/FUNCTION INVESTIGATION OF A FUNCTIONAL LOOP MOVEMENT IN A GH11 XYLANASE. Computational and Structural Biotechnology Journal, 2012, 1, e201207001.	4.1	25
35	Characterization of Arabinoxylan/Cellulose Nanocrystals Gels to Investigate Fluorescent Probes Mobility in Bioinspired Models of Plant Secondary Cell Wall. Biomacromolecules, 2012, 13, 206-214.	5.4	30
36	GH11 xylanases: Structure/function/properties relationships and applications. Biotechnology Advances, 2012, 30, 564-592.	11.7	351

#	Article	IF	CITATION
37	Heterologous production of the <i>Piromyces equi </i> cinnamoyl esterase in <i>Trichoderma reesei </i> for biotechnological applications. Letters in Applied Microbiology, 2009, 49, 673-678.	2.2	17
38	The Structure of the Complex between a Branched Pentasaccharide and <i>Thermobacillus xylanilyticus </i> GH-51 Arabinofuranosidase Reveals Xylan-Binding Determinants and Induced Fit. Biochemistry, 2008, 47, 7441-7451.	2.5	53
39	New insights into the role of the thumb-like loop in GH-11 xylanases. Protein Engineering, Design and Selection, 2007, 20, 15-23.	2.1	47
40	Engineering increased thermostability in the thermostable GH- 11 xylanase from Thermobacillus xylanilyticus. Journal of Biotechnology, 2006, 125, 338-350.	3.8	76
41	Probing the cell wall heterogeneity of micro-dissected wheat caryopsis using both active and inactive forms of a GH11 xylanase. Planta, 2005, 222, 246-257.	3.2	36
42	Tyrosine 105 and Threonine 212 at Outermost Substrate Binding Subsites –6 and +4 Control Substrate Specificity, Oligosaccharide Cleavage Patterns, and Multiple Binding Modes of Barley α-Amylase 1. Journal of Biological Chemistry, 2004, 279, 10093-10102.	3.4	33
43	Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydrate Research, 2004, 339, 2529-2540.	2.3	125