
Priscilla Cerroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7295148/publications.pdf Version: 2024-02-01

DDISCULA CEDDONI

#	Article	IF	CITATIONS
1	Photometric modelling and VIS-IR albedo maps of Rhea from Cassini-VIMS. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L62-L66.	3.3	3
2	Cassini-VIMS observations of Saturn's main rings: II. A spectrophotometric study by means of Monte Carlo ray-tracing and Hapke's theory. Icarus, 2019, 317, 242-265.	2.5	17
3	The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nature Astronomy, 2019, 3, 649-658.	10.1	34
4	Photometric Modeling and VISâ€IR Albedo Maps of Dione From Cassiniâ€VIMS. Geophysical Research Letters, 2018, 45, 2184-2192.	4.0	7
5	Photometric Modeling and VISâ€IR Albedo Maps of Tethys From Cassiniâ€VIMS. Geophysical Research Letters, 2018, 45, 6400-6407.	4.0	6
6	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	5.1	67
7	The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. Icarus, 2016, 274, 334-349.	2.5	54
8	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61
9	Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps. Icarus, 2016, 271, 292-313.	2.5	23
10	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
11	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	12.6	293
12	The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 2015, 525, 500-503.	27.8	199
13	VIRTIS on Rosetta: a unique technique to observe comet 67P/Churyumov-Gerasimenko – first results and prospects. Proceedings of SPIE, 2015, , .	0.8	4
14	Spectroscopic classification of icy satellites of Saturn II: Identification of terrain units on Rhea. Icarus, 2014, 234, 1-16.	2.5	26
15	Cassini–VIMS observations of Saturn's main rings: I. Spectral properties and temperature radial profiles variability with phase angle and elevation. Icarus, 2014, 241, 45-65.	2.5	24
16	Spectroscopic classification of icy satellites of saturn — Identification of terrain units on dione and rhea. , 2014, , .		0
17	Spectroscopic classification of icy satellites of Saturn I: Identification of terrain units on Dione. Icarus, 2013, 226, 1331-1349.	2.5	22
18	THE RADIAL DISTRIBUTION OF WATER ICE AND CHROMOPHORES ACROSS SATURN'S SYSTEM. Astrophysical Journal, 2013, 766, 76.	4.5	26

PRISCILLA CERRONI

#	Article	IF	CITATIONS
19	Saturn's icy satellites and rings investigated by Cassini–VIMS: III – Radial compositional variability. Icarus, 2012, 220, 1064-1096.	2.5	86
20	MarcoPolo-R near earth asteroid sample return mission. Experimental Astronomy, 2012, 33, 645-684.	3.7	72
21	Mapping Titan's surface features within the visible spectrum via Cassini VIMS. Planetary and Space Science, 2012, 60, 52-61.	1.7	25
22	Hapke modeling of Rhea surface properties through Cassini-VIMS spectra. Icarus, 2011, 214, 541-555.	2.5	64
23	The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS. Science, 2011, 334, 492-494.	12.6	110
24	Correlations between VIMS and RADAR data over the surface of Titan: Implications for Titan's surface properties. Icarus, 2010, 208, 366-384.	2.5	8
25	Saturn's icy satellites investigated by Cassini–VIMS. Icarus, 2010, 206, 507-523.	2.5	47
26	Martian atmosphere as observed by VIRTISâ€M on Rosetta spacecraft. Journal of Geophysical Research, 2010, 115, .	3.3	10
27	VIMS spectral mapping observations of Titan during the Cassini prime mission. Planetary and Space Science, 2009, 57, 1950-1962.	1.7	28
28	Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus, 2009, 199, 429-441.	2.5	69
29	Saturn Satellites as Seen by Cassini Mission. Earth, Moon and Planets, 2009, 105, 289-310.	0.6	4
30	VIRTIS: An Imaging Spectrometer for the ROSETTA Mission. , 2009, , 563-585.		3
31	Hydrocarbons on Saturn's satellites lapetus and Phoebe. Icarus, 2008, 193, 334-343.	2.5	86
32	Identification of spectral units on Phoebe. Icarus, 2008, 193, 233-251.	2.5	32
33	A close look at Saturn's rings with Cassini VIMS. Icarus, 2008, 193, 182-212.	2.5	113
34	Saturn's icy satellites investigated by Cassini-VIMS. Icarus, 2007, 186, 259-290.	2.5	62
35	Surface composition of Hyperion. Nature, 2007, 448, 54-56.	27.8	56
36	Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Science Reviews, 2007, 128, 529-559.	8.1	181

PRISCILLA CERRONI

#	Article	IF	CITATIONS
37	Observations in the Saturn system during approach and orbital insertion, with Cassini's visual and infrared mapping spectrometer (VIMS). Astronomy and Astrophysics, 2006, 446, 707-716.	5.1	57
38	Science objectives and first results from the SMART-1/AMIE multicolour micro-camera. Advances in Space Research, 2006, 37, 14-20.	2.6	26
39	High-resolution CASSINI-VIMS mosaics of Titan and the icy Saturnian satellites. Planetary and Space Science, 2006, 54, 1146-1155.	1.7	24
40	Photometric properties of Titan's surface from Cassini VIMS: Relevance to titan's hemispherical albedo dichotomy and surface stability. Planetary and Space Science, 2006, 54, 1540-1551.	1.7	13
41	Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science, 2006, 312, 400-404.	12.6	1,395
42	THE ATMOSPHERES OF SATURN AND TITAN IN THE NEAR-INFRARED: FIRST RESULTS OF CASSINI/VIMS. Earth, Moon and Planets, 2006, 96, 119-147.	0.6	57
43	G-MODE CLASSIFICATION OF SPECTROSCOPIC DATA. Earth, Moon and Planets, 2006, 96, 165-197.	0.6	8
44	Composition and Physical Properties of Enceladus' Surface. Science, 2006, 311, 1425-1428.	12.6	199
45	Cassini Visual and Infrared Mapping Spectrometer Observations of Iapetus: Detection of CO 2. Astrophysical Journal, 2005, 622, L149-L152.	4.5	94
46	The advanced Moon micro-imager experiment (AMIE) on SMART-1: Scientific goals and expected results. Planetary and Space Science, 2005, 53, 1309-1318.	1.7	18
47	A 5-Micron-Bright Spot on Titan: Evidence for Surface Diversity. Science, 2005, 310, 92-95.	12.6	78
48	Compositional maps of Saturn's moon Phoebe from imaging spectroscopy. Nature, 2005, 435, 66-69.	27.8	155
49	Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature, 2005, 435, 786-789.	27.8	208
50	Phyllosilicates on Mars and implications for early martian climate. Nature, 2005, 438, 623-627.	27.8	825
51	The Evolution of Titan's Mid-Latitude Clouds. Science, 2005, 310, 474-477.	12.6	139
52	The Cassini Visual And Infrared Mapping Spectrometer (Vims) Investigation. Space Science Reviews, 2004, 115, 111-168.	8.1	369
53	Cassini VIMS observations of the Galilean satellites including the VIMS calibration procedure. Icarus, 2004, 172, 104-126.	2.5	61
54	CASSINI/VIMS-V at Jupiter: Radiometric calibration test and data results. Planetary and Space Science, 2004, 52, 661-670.	1.7	27

PRISCILLA CERRONI

#	Article	IF	CITATIONS
55	The Cassini Visual and Infrared Mapping Spectrometer (VIMS) Investigation. , 2004, , 111-168.		6
56	Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini's flyby of Jupiter. Icarus, 2003, 164, 461-470.	2.5	48
57	Detection of Sub-Micron Radiation from the Surface of Venus by Cassini/VIMS. Icarus, 2000, 148, 307-311.	2.5	62
58	Virtis : an imaging spectrometer for the rosetta mission. Planetary and Space Science, 1998, 46, 1291-1304.	1.7	72
59	Imaging spectroscopy of Saturn and its satellites : vims-v onboard Cassini. Planetary and Space Science, 1998, 46, 1263-1276.	1.7	11
60	Martian Aerosols: Near-Infrared Spectral Properties and Effects on the Observation of the Surface. Icarus, 1994, 111, 317-337.	2.5	55
61	Planetary Fourier spectrometer: An interferometer for atmospheric studies on board Mars 94 mission. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 575-588.	0.2	4
62	Multivariate classification methods in planetary sciences. Earth, Moon and Planets, 1992, 59, 141-152.	0.6	18
63	Phase curves of meteorites and terrestrial rocks: Laboratory measurements and applications to asteroids. Icarus, 1990, 83, 325-348.	2.5	40
64	Origin of satellite systems of the outer planets. Advances in Space Research, 1990, 10, 145-158.	2.6	2
65	Asteroidal catastrophic collisions simulated by hypervelocity impact experiments. Icarus, 1986, 66, 487-514.	2.5	51
66	On the theory of radio frequency emission from macroscopic hypervelocity impacts and rock fracturing. Physics of the Earth and Planetary Interiors, 1985, 40, 316-319.	1.9	21
67	On the role of meteoritic impacts in the formation of organic molecules. Advances in Space Research, 1984, 4, 97-102.	2.6	2
68	Radiofrequency emissions observed during macroscopic hypervelocity impact experiments. Nature, 1984, 308, 830-832.	27.8	38
69	Shapes of asteroids compared with fragments from hypervelocity impact experiments. Nature, 1984, 308, 832-834.	27.8	68
70	Hypervelocity acceleration techniques: A review of exisiting capabilities and prospects for future developments. Advances in Space Research, 1982, 2, 259-268.	2.6	1
71	Magnification of pre-existing magnetic fields in impact-produced plasmas, with reference to impact craters. Planetary and Space Science, 1982, 30, 395-398.	1.7	11
72	Experimental Study of Effects Associated with Macroscopic Hypervelocity Impacts. , 1982, , 333-357.		4

A Possible Mechanism for Impact Magnetisation of Cratered Surfaces. , 1982, , 363-366. 2	#	Article	IF	CITATIONS
	73	A Possible Mechanism for Impact Magnetisation of Cratered Surfaces. , 1982, , 363-366.		2