Arumugam Manthiram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294507/publications.pdf Version: 2024-02-01

		384	693
582	77,233	134	253
papers	citations	h-index	g-index
500		500	00155
592	592	592	32155
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rechargeable Lithium–Sulfur Batteries. Chemical Reviews, 2014, 114, 11751-11787.	23.0	3,842
2	Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017, 2, .	23.3	3,057
3	Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4, 180-186.	19.8	2,101
4	Challenges and Prospects of Lithium–Sulfur Batteries. Accounts of Chemical Research, 2013, 46, 1125-1134.	7.6	1,962
5	A reflection on lithium-ion battery cathode chemistry. Nature Communications, 2020, 11, 1550.	5.8	1,398
6	Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications, 2012, 3, 1166.	5.8	1,298
7	Lithium–Sulfur Batteries: Progress and Prospects. Advanced Materials, 2015, 27, 1980-2006.	11.1	1,288
8	An Outlook on Lithium Ion Battery Technology. ACS Central Science, 2017, 3, 1063-1069.	5.3	997
9	High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews, 2017, 46, 3006-3059.	18.7	986
10	Nickelâ€Rich and Lithiumâ€Rich Layered Oxide Cathodes: Progress and Perspectives. Advanced Energy Materials, 2016, 6, 1501010.	10.2	946
11	High-nickel layered oxide cathodes for lithium-based automotive batteries. Nature Energy, 2020, 5, 26-34.	19.8	940
12	Materials Challenges and Opportunities of Lithium Ion Batteries. Journal of Physical Chemistry Letters, 2011, 2, 176-184.	2.1	928
13	Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nature Communications, 2015, 6, 7760.	5.8	923
14	Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. Journal of the American Chemical Society, 2016, 138, 9385-9388.	6.6	844
15	A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chemical Communications, 2012, 48, 8817.	2.2	689
16	Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nature Communications, 2014, 5, 3949.	5.8	572
17	Nanostructured electrode materials for electrochemical energy storage and conversion. Energy and Environmental Science, 2008, 1, 621.	15.6	548
18	A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy and Environmental Science, 2014, 7, 1339.	15.6	546

#	Article	IF	CITATIONS
19	Mesoporous Titanium Nitrideâ€Enabled Highly Stable Lithiumâ€Sulfur Batteries. Advanced Materials, 2016, 28, 6926-6931.	11.1	544
20	Freestanding 1T MoS ₂ /graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy and Environmental Science, 2019, 12, 344-350.	15.6	510
21	Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule, 2020, 4, 285-291.	11.7	489
22	Vertical Co ₉ S ₈ hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy and Environmental Science, 2018, 11, 2560-2568.	15.6	486
23	A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2017, 6, 125-139.	9.5	478
24	Electrode–electrolyte interfaces in lithium-based batteries. Energy and Environmental Science, 2018, 11, 527-543.	15.6	474
25	Dualâ€Confined Flexible Sulfur Cathodes Encapsulated in Nitrogenâ€Doped Doubleâ€Shelled Hollow Carbon Spheres and Wrapped with Graphene for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1402263.	10.2	459
26	Bifunctional Separator with a Lightâ€Weight Carbonâ€Coating for Dynamically and Statically Stable Lithiumâ€ S ulfur Batteries. Advanced Functional Materials, 2014, 24, 5299-5306.	7.8	457
27	Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1–yNdyCuO2. Nature, 1991, 351, 549-551.	13.7	456
28	Yolk–Shelled C@Fe ₃ O ₄ Nanoboxes as Efficient Sulfur Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1702707.	11.1	455
29	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 753-756.	7.2	449
30	Low-Cost High-Energy Potassium Cathode. Journal of the American Chemical Society, 2017, 139, 2164-2167.	6.6	446
31	Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution. Chemistry of Materials, 2011, 23, 3614-3621.	3.2	441
32	Current Status and Future Prospects of Metal–Sulfur Batteries. Advanced Materials, 2019, 31, e1901125.	11.1	422
33	Hydroxylated Graphene–Sulfur Nanocomposites for Highâ€Rate Lithium–Sulfur Batteries. Advanced Energy Materials, 2013, 3, 1008-1012.	10.2	395
34	A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nature Communications, 2013, 4, 2985.	5.8	376
35	Progress in Highâ€Voltage Cathode Materials for Rechargeable Sodiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1701785.	10.2	371
36	Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials, 2018, 28, 1801188.	7.8	368

#	Article	IF	CITATIONS
37	LnBaCo[sub 2]O[sub 5+Î] Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2008, 155, B385.	1.3	365
38	Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li‧ Batteries. Advanced Materials, 2014, 26, 1360-1365.	11.1	351
39	Lithium insertion into Fe2(SO4)3 frameworks. Journal of Power Sources, 1989, 26, 403-408.	4.0	350
40	Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni _{0.9} Co _{0.05} Mn _{0.05}]O ₂ Cathode for Lithium-Ion Batteries. Chemistry of Materials, 2017, 29, 8486-8493.	3.2	350
41	A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Materials, 2019, 20, 55-70.	9.5	349
42	Nanoscale design to enable the revolution in renewable energy. Energy and Environmental Science, 2009, 2, 559.	15.6	348
43	Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V LiMn _{1.42} Ni _{0.42} Co _{0.16} O ₄ Spinel Cathodes in Lithium-ion Cells. Chemistry of Materials, 2009, 21, 1695-1707.	3.2	345
44	"Wiring―Feâ€N _{<i>x</i>} â€Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. Advanced Materials, 2017, 29, 1606534.	11.1	342
45	High-Performance Li–S Batteries with an Ultra-lightweight MWCNT-Coated Separator. Journal of Physical Chemistry Letters, 2014, 5, 1978-1983.	2.1	340
46	A Polyethylene Glycol‣upported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium–Sulfur Batteries. Advanced Materials, 2014, 26, 7352-7357.	11.1	325
47	A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 4530-4538.	5.2	317
48	Highâ€Energy, Highâ€Rate, Lithium–Sulfur Batteries: Synergetic Effect of Hollow TiO ₂ â€Webbed Carbon Nanotubes and a Dual Functional Carbonâ€Paper Interlayer. Advanced Energy Materials, 2016, 6, 1501480.	10.2	308
49	Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nature Communications, 2017, 8, 14589.	5.8	306
50	High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability. Journal of Materials Chemistry, 2009, 19, 4965.	6.7	302
51	Collapse of LiNi _{1–<i>x</i>–<i>y</i>} Co _{<i>x</i>} Mn _{<i>y</i>} O ₂ Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries. Journal of the American Chemical Society. 2019. 141. 5097-5101.	6.6	299
52	Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes. Angewandte Chemie - International Edition, 2013, 52, 6930-6935.	7.2	291
53	Ambient Temperature Sodium–Sulfur Batteries. Small, 2015, 11, 2108-2114.	5.2	288
54	A Mg-Doped High-Nickel Layered Oxide Cathode Enabling Safer, High-Energy-Density Li-Ion Batteries. Chemistry of Materials, 2019, 31, 938-946.	3.2	288

#	Article	IF	CITATIONS
55	Role of Oxygen Vacancies on the Performance of Li[Ni _{0.5–<i>x</i>} Mn _{1.5+<i>x</i>}]O ₄ (<i>x</i> = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2012, 24, 3101-3109.	3.2	283
56	A High Energy Lithium‧ulfur Battery with Ultrahigh‣oading Lithium Polysulfide Cathode and its Failure Mechanism. Advanced Energy Materials, 2016, 6, 1502459.	10.2	282
57	Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn _{1.5} Ni _{0.5} O ₄ . Journal of Physical Chemistry C, 2009, 113, 15073-15079.	1.5	280
58	Copper-substituted Na _{0.67} Ni _{0.3â^'x} Cu _x Mn _{0.7} O ₂ cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. Journal of Materials Chemistry A, 2017, 5, 8752-8761.	5.2	272
59	A Facile Layerâ€byâ€Layer Approach for Highâ€Arealâ€Capacity Sulfur Cathodes. Advanced Materials, 2015, 27, 1694-1700.	11.1	270
60	Lithium insertion into Fe2(MO4)3 frameworks: Comparison of M = W with M = Mo. Journal of Solid State Chemistry, 1987, 71, 349-360.	1.4	265
61	Pt–M (M=Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochemistry Communications, 2002, 4, 898-903.	2.3	260
62	Mn versus Al in Layered Oxide Cathodes in Lithiumâ€lon Batteries: A Comprehensive Evaluation on Longâ€Term Cyclability. Advanced Energy Materials, 2018, 8, 1703154.	10.2	260
63	Orthorhombic Bipyramidal Sulfur Coated with Polypyrrole Nanolayers As a Cathode Material for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2012, 116, 8910-8915.	1.5	259
64	Electrochemically Stable Rechargeable Lithium–Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide. Advanced Energy Materials, 2015, 5, 1500738.	10.2	255
65	Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode. Journal of Materials Chemistry, 2010, 20, 3961.	6.7	252
66	Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy, 2015, 12, 240-249.	8.2	252
67	Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi _{0.8–<i>x</i>} Co _{0.1} Mn _{0.1+<i>x</i>} O ₂ (0.0 ≤i>x <td>>)4ījī)ETQq</td> <td>12/50.78431</td>	>)4ījī)ETQq	12/50.78431
68	A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries. ACS Nano, 2016, 10, 10462-10470.	7.3	252
69	Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes. Journal of the Electrochemical Society, 2006, 153, A1760.	1.3	240
70	Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. Journal of the American Chemical Society, 2018, 140, 250-257.	6.6	239
71	Modified Highâ€Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 6480-6485.	7.2	234
72	Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip) ₄] ₂ Electrolyte. ACS Energy Letters, 2018, 3, 2005-2013.	8.8	234

#	Article	IF	CITATIONS
73	A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021, 34, 282-300.	9.5	233
74	Anodeâ€Free Full Cells: A Pathway to Highâ€Energy Density Lithiumâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2000804.	10.2	232
75	Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries. Journal of Physical Chemistry Letters, 2012, 3, 2164-2167.	2.1	230
76	Designing Advanced Lithiumâ€Based Batteries for Lowâ€Temperature Conditions. Advanced Energy Materials, 2020, 10, 2001972.	10.2	225
77	A manganese oxyiodide cathode for rechargeable lithium batteries. Nature, 1997, 390, 265-267.	13.7	223
78	Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li ₂ ZrO ₃ Surface Coating for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9718-9725.	4.0	219
79	Factors Influencing the Irreversible Oxygen Loss and Reversible Capacity in Layered Li[Li1/3Mn2/3]O2â^'Li[M]O2(M = Mn0.5-yNi0.5-yCo2yand Ni1-yCoy) Solid Solutions. Chemistry of Materials, 2007, 19, 3067-3073.	3.2	218
80	Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Advances, 2012, 2, 5927.	1.7	211
81	Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO ₄ /C Nanocomposite Cathodes for Lithium Ion Batteries. Journal of Physical Chemistry C, 2008, 112, 14665-14671.	1.5	210
82	A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 37, 143-160.	9.5	210
83	Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes. Journal of Physical Chemistry C, 2011, 115, 7097-7103.	1.5	207
84	Highâ€Nickel NMA: A Cobaltâ€Free Alternative to NMC and NCA Cathodes for Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2002718.	11.1	205
85	The influence of oxygen variation on the crystal structure and phase composition of the superconductor yttrium barium copper oxide (YBa2Cu3O7-x). Journal of the American Chemical Society, 1987, 109, 6667-6669.	6.6	202
86	Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn _{1.5} Ni _{0.5–<i>x</i>} M _{<i>x</i>} O ₄ (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2012, 24, 3720-3731.	3.2	202
87	A Review of the Design of Advanced Binders for Highâ€Performance Batteries. Advanced Energy Materials, 2020, 10, 2002508.	10.2	202
88	Synthesis of Nanocrystalline  VO 2 and Its Electrochemical Behavior in Lithium Batteries. Journal of the Electrochemical Society, 1997, 144, 520-524.	1.3	201
89	Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochemistry Communications, 2010, 12, 750-753.	2.3	201
90	Layered LnBaCo ₂ O _{5+Î′} perovskite cathodes for solid oxide fuel cells: an overview and perspective. Journal of Materials Chemistry A, 2015, 3, 24195-24210.	5.2	201

#	Article	IF	CITATIONS
91	Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry. Small Methods, 2018, 2, 1700279.	4.6	201
92	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	5.2	199
93	1D Co―and Nâ€Doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Triâ€iodide Reduction Reactions. Advanced Energy Materials, 2017, 7, 1601979.	10.2	194
94	Metal Sulfideâ€Decorated Carbon Sponge as a Highly Efficient Electrocatalyst and Absorbant for Polysulfide in High‣oading Li ₂ S Batteries. Advanced Energy Materials, 2019, 9, 1900584.	10.2	194
95	Highly Solvating Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1803096.	10.2	193
96	Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. Journal of Materials Chemistry, 2012, 22, 24862.	6.7	192
97	Sulfurâ€Embedded Activated Multichannel Carbon Nanofiber Composites for Longâ€Life, Highâ€Rate Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1601943.	10.2	191
98	Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for Highâ€Voltage Liâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1501008.	10.2	190
99	Highâ€Performance Lithium‣ulfur Batteries with a Self‣upported, 3D Li ₂ Sâ€Doped Graphene Aerogel Cathodes. Advanced Energy Materials, 2016, 6, 1501355.	10.2	183
100	3D Hierarchical Core–Shell Nanostructured Arrays on Carbon Fibers as Catalysts for Direct Urea Fuel Cells. Advanced Energy Materials, 2018, 8, 1702207.	10.2	182
101	Influence of Cation Ordering and Lattice Distortion on the Charge–Discharge Behavior of LiMn _{1.5} Ni _{0.5} O ₄ Spinel between 5.0 and 2.0 V. Chemistry of Materials, 2012, 24, 3610-3620.	3.2	180
102	Effective Stabilization of a High-Loading Sulfur Cathode and a Lithium-Metal Anode in Li-S Batteries Utilizing SWCNT-Modulated Separators. Small, 2016, 12, 174-179.	5.2	175
103	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 12783-12788.	7.2	172
104	Direct growth of ternary Ni–Fe–P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 2496-2503.	5.2	172
105	Extending the Service Life of Highâ€Ni Layered Oxides by Tuning the Electrode–Electrolyte Interphase. Advanced Energy Materials, 2018, 8, 1801957.	10.2	171
106	A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li–S batteries. Chemical Communications, 2014, 50, 4184.	2.2	169
107	Soft Chemistry Synthesis and Characterization of Layered Li1-xNi1-yCoyO2-δ (0 ≤ ≤ and 0 ≤y ≤1). Chemistry of Materials, 2001, 13, 2951-2957.	3.2	168
108	Dimensionally Modulated, Single-Crystalline LiMPO ₄ (M= Mn, Fe, Co, and Ni) with Nano-Thumblike Shapes for High-Power Energy Storage. Inorganic Chemistry, 2009, 48, 946-952.	1.9	167

#	Article	IF	CITATIONS
109	Understanding the Shifts in the Redox Potentials of Olivine LiM _{1â^{^^}<i>y</i>} M _{<i>y</i>} PO ₄ (M = Fe, Mn, Co, and Mg) Solid Solution Cathodes. Journal of Physical Chemistry C, 2010, 114, 15530-15540.	1.5	167
110	Rational Design of Statically and Dynamically Stable Lithium–Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio. Advanced Materials, 2018, 30, 1705951.	11.1	167
111	Performance Enhancement and Mechanistic Studies of Room-Temperature Sodium–Sulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na ₂ S/Activated Carbon Nanofiber Cathode. Chemistry of Materials, 2016, 28, 896-905.	3.2	166
112	Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochemistry Communications, 2001, 3, 624-627.	2.3	162
113	Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 22603-22612.	1.5	159
114	High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18737-18741.	5.2	158
115	Electrode–Electrolyte Interfaces in Lithium–Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Accounts of Chemical Research, 2017, 50, 2653-2660.	7.6	158
116	Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 5877-5889.	5.2	155
117	Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. ACS Nano, 2017, 11, 5853-5863.	7.3	155
118	MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries. IScience, 2018, 4, 36-43.	1.9	155
119	Conductive Surface Modification with Aluminum of High Capacity Layered Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ Cathodes. Journal of Physical Chemistry C, 2010, 114, 9528-9533.	1.5	152
120	Long-Term Cyclability of NCM-811 at High Voltages in Lithium-Ion Batteries: an In-Depth Diagnostic Study. Chemistry of Materials, 2020, 32, 7796-7804.	3.2	152
121	Capacity Enhancement and Discharge Mechanisms of Roomâ€Temperature Sodium–Sulfur Batteries. ChemElectroChem, 2014, 1, 1275-1280.	1.7	151
122	Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries. Nano Energy, 2017, 33, 124-129.	8.2	150
123	Enhanced Cycling Stability of Hybrid Li–Air Batteries Enabled by Ordered Pd ₃ Fe Intermetallic Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7278-7281.	6.6	149
124	Designing Lithium-Sulfur Cells with Practically Necessary Parameters. Joule, 2018, 2, 710-724.	11.7	148
125	Molybdenum Boride as an Efficient Catalyst for Polysulfide Redox to Enable Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2004741.	11.1	148
126	Factors Influencing the Electrochemical Properties of High-Voltage Spinel Cathodes: Relative Impact of Morphology and Cation Ordering. Chemistry of Materials, 2013, 25, 2890-2897.	3.2	147

#	Article	IF	CITATIONS
127	Ambientâ€Temperature Sodium–Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiberâ€Activated Carbon Composite Electrode. Advanced Energy Materials, 2015, 5, 1500350.	10.2	147
128	Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li–S batteries with pure sulfur cathodes. Journal of Materials Chemistry A, 2015, 3, 18829-18834.	5.2	147
129	High Capacity Surface-Modified LiCoO[sub 2] Cathodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003, 6, A16.	2.2	146
130	Stabilized Lithium–Metal Surface in a Polysulfide-Rich Environment of Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2014, 5, 2522-2527.	2.1	145
131	1T′â€ReS ₂ Nanosheets In Situ Grown on Carbon Nanotubes as a Highly Efficient Polysulfide Electrocatalyst for Stable Li–S Batteries. Advanced Energy Materials, 2020, 10, 2001017.	10.2	145
132	Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. Energy Storage Materials, 2021, 34, 250-259.	9.5	145
133	Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2012, 159, A1420-A1424.	1.3	141
134	Li ₂ Sâ€Carbon Sandwiched Electrodes with Superior Performance for Lithiumâ€&ulfur Batteries. Advanced Energy Materials, 2014, 4, 1300655.	10.2	141
135	Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. Journal of Materials Chemistry, 2008, 18, 5661.	6.7	140
136	<i>In Situ</i> -Formed Li ₂ S in Lithiated Graphite Electrodes for Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2013, 135, 18044-18047.	6.6	140
137	3D CoSe@C Aerogel as a Host for Dendriteâ€Free Lithiumâ€Metal Anode and Efficient Sulfur Cathode in Li–S Full Cells. Advanced Energy Materials, 2020, 10, 2002654.	10.2	140
138	A 3D Lithiophilic Mo ₂ Nâ€Modified Carbon Nanofiber Architecture for Dendriteâ€Free Lithiumâ€Metal Anodes in a Full Cell. Advanced Materials, 2019, 31, e1904537.	11.1	139
139	TiS ₂ –Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium–Sulfur Batteries. ACS Energy Letters, 2018, 3, 568-573.	8.8	138
140	Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nature Communications, 2021, 12, 3031.	5.8	138
141	Comparison of Ln[sub 0.6]Sr[sub 0.4]CoO[sub 3â^'Î] (Ln=La, Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A794.	1.3	136
142	Performance Enhancement and Mechanistic Studies of Magnesium–Sulfur Cells with an Advanced Cathode Structure. ACS Energy Letters, 2016, 1, 431-437.	8.8	136
143	Phase Relationships and Structural and Chemical Stabilities of Charged Li[sub 1â^x]CoO[sub 2â^îÎ] and Li[sub 1â^x]Ni[sub 0.85]Co[sub 0.15]O[sub 2â^îÎ] Cathodes. Electrochemical and Solid-State Letters, 2003, 6, A9.	2.2	135
144	Improved Electrochemical Performance of the 5â€,V Spinel Cathode LiMn[sub 1.5]Ni[sub 0.42]Zn[sub 0.08]O[sub 4] by Surface Modification. Journal of the Electrochemical Society, 2009, 156, A66.	1.3	135

Arumugam Manthiram

#	Article	IF	CITATIONS
145	Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes. Journal of Materials Chemistry A, 2013, 1, 10362.	5.2	135
146	Lithium–sulfur batteries with superior cycle stability by employing porous current collectors. Electrochimica Acta, 2013, 107, 569-576.	2.6	134
147	Electrochemical Energy Storage with a Reversible Nonaqueous Roomâ€Temperature Aluminum–Sulfur Chemistry. Advanced Energy Materials, 2017, 7, 1700561.	10.2	134
148	Reining in dissolved transition-metal ions. Science, 2020, 369, 140-141.	6.0	134
149	Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte. Journal of Materials Chemistry A, 2015, 3, 14864-14870.	5.2	133
150	Integrated Nano-Domains of Disordered and Ordered Spinel Phases in LiNi _{0.5} Mn _{1.5} O ₄ for Li-Ion Batteries. Chemistry of Materials, 2014, 26, 4377-4386.	3.2	132
151	A review on the stability and surface modification of layered transition-metal oxide cathodes. Materials Today, 2021, 46, 155-182.	8.3	132
152	Hybrid and Aqueous Lithiumâ€Air Batteries. Advanced Energy Materials, 2015, 5, 1401302.	10.2	131
153	A Comprehensive Analysis of the Interphasial and Structural Evolution over Longâ€Term Cycling of Ultrahighâ€Nickel Cathodes in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1902731.	10.2	131
154	Sulfonated Poly(ether ether ketone) Membranes for Direct Methanol Fuel Cells. Electrochemical and Solid-State Letters, 2003, 6, A229.	2.2	129
155	A Natural Carbonized Leaf as Polysulfide Diffusion Inhibitor for Highâ€Performance Lithium–Sulfur Battery Cells. ChemSusChem, 2014, 7, 1655-1661.	3.6	129
156	Advanced hybrid Li–air batteries with high-performance mesoporous nanocatalysts. Energy and Environmental Science, 2014, 7, 2630.	15.6	129
157	Insights into the Improved High-Voltage Performance of Li-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries. CheM, 2018, 4, 2124-2139.	5.8	128
158	Effect of Fe substitution on the structure and properties of LnBaCo2â^'Fe O5+ (Ln = Nd and Gd) cathodes. Journal of Power Sources, 2010, 195, 6411-6419.	4.0	127
159	Room-Temperature Sodium–Sulfur Batteries with Liquid-Phase Sodium Polysulfide Catholytes and Binder-Free Multiwall Carbon Nanotube Fabric Electrodes. Journal of Physical Chemistry C, 2014, 118, 22952-22959.	1.5	127
160	Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte. CheM, 2018, 4, 586-598.	5.8	127
161	Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries. Journal of Physical Chemistry Letters, 2014, 5, 1943-1947.	2.1	126
162	Anode-free, Lean-Electrolyte Lithium-Sulfur Batteries Enabled by Tellurium-Stabilized Lithium Deposition. Joule, 2020, 4, 1121-1135.	11.7	126

#	Article	IF	CITATIONS
163	Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries. Journal of Power Sources, 2015, 282, 429-436.	4.0	125
164	A core–shell electrode for dynamically and statically stable Li–S battery chemistry. Energy and Environmental Science, 2016, 9, 3188-3200.	15.6	124
165	Synthesis of the high-Tc superconductor YBa2Cu3O7–δ in small particle size. Nature, 1987, 329, 701-703.	13.7	123
166	The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP ₂ /C hybrid anode. Chemical Communications, 2016, 52, 4337-4340.	2.2	122
167	Understanding the Air-Exposure Degradation Chemistry at a Nanoscale of Layered Oxide Cathodes for Sodium-Ion Batteries. Nano Letters, 2019, 19, 182-188.	4.5	122
168	Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 11163.	5.2	121
169	Longâ€Life Lithium–Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires. Advanced Materials, 2018, 30, e1804149.	11.1	120
170	Longâ€Life, Highâ€Rate Lithium–Sulfur Cells with a Carbonâ€Free VN Host as an Efficient Polysulfide Adsorbent and Lithium Dendrite Inhibitor. Advanced Energy Materials, 2020, 10, 1903241.	10.2	120
171	<i>In-Situ</i> Assembled VS ₄ as a Polysulfide Mediator for High-Loading Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 1177-1185.	8.8	120
172	An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 34, 229-240.	9.5	120
173	Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn _{1.9} Al _{0.1} O ₄ . Journal of Materials Chemistry A, 2016, 4, 5839-5841.	5.2	119
174	Facilitating the Operation of Lithium-Ion Cells with High-Nickel Layered Oxide Cathodes with a Small Dose of Aluminum. Chemistry of Materials, 2018, 30, 3101-3109.	3.2	119
175	Chemical synthesis and properties of Li1â^'î´â^'xNi1+δO2 and Li[Ni2]O4. Journal of Solid State Chemistry, 1992, 96, 123-131.	1.4	118
176	Dependence ofTcon hole concentration in the superconductors Bi4Sr3Ca3â^'xYxCu4O16+δ. Applied Physics Letters, 1988, 53, 420-422.	1.5	116
177	Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nature Communications, 2019, 10, 3447.	5.8	116
178	Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode. Journal of Materials Chemistry A, 2015, 3, 15683-15691.	5.2	114
179	Recent Progress in High Donor Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001456.	10.2	112
180	Octahedral and truncated high-voltage spinel cathodes: the role of morphology and surface planes in electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 3347.	5.2	110

#	Article	IF	CITATIONS
181	Polysulfide‧huttle Control in Lithium‧ulfur Batteries with a Chemically/Electrochemically Compatible NaSICONâ€Type Solid Electrolyte. Advanced Energy Materials, 2016, 6, 1601392.	10.2	110
182	Na ₂ S–Carbon Nanotube Fabric Electrodes for Roomâ€Temperature Sodium–Sulfur Batteries. Chemistry - A European Journal, 2015, 21, 4233-4237.	1.7	109
183	High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes. ACS Energy Letters, 2016, 1, 46-51.	8.8	109
184	Influence of atomic ordering on the electrocatalytic activity of Pt–Co alloys in alkaline electrolyte and proton exchange membrane fuel cells. Journal of Materials Chemistry, 2004, 14, 1454-1460.	6.7	108
185	Hybrid Lithium–Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte. ACS Applied Materials & Interfaces, 2015, 7, 16625-16631.	4.0	107
186	Hierarchical pore-in-pore and wire-in-wire catalysts for rechargeable Zn– and Li–air batteries with ultra-long cycle life and high cell efficiency. Energy and Environmental Science, 2015, 8, 3274-3282.	15.6	107
187	An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9744-9751.	11.1	107
188	Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. Journal of Power Sources, 2006, 157, 222-225.	4.0	105
189	Calculations of Oxygen Stability in Lithium-Rich Layered Cathodes. Journal of Physical Chemistry C, 2012, 116, 23201-23204.	1.5	104
190	Crystal-Chemical Guide for Understanding Redox Energy Variations of M ^{2+/3+} Couples in Polyanion Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2013, 25, 4010-4016.	3.2	104
191	Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2013, 1, 7775.	5.2	104
192	Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. Journal of Materials Chemistry A, 2014, 2, 3932.	5.2	104
193	High-Performance Lithium–Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode–Electrolyte Interface. ACS Applied Materials & Interfaces, 2016, 8, 983-987.	4.0	104
194	Rational Design of a Dualâ€Function Hybrid Cathode Substrate for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1801014.	10.2	103
195	Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5 V Spinel LiMn[sub 1.5â^'y]Ni[sub 0.5â^'z]M[sub y+z]O[sub 4] (M=Li, Mg, Fe, Co, and Zn). Electrochemical and Solid-State Letters, 2005, 8, A403.	2.2	102
196	Chemical extraction of Zn from ZnMn ₂ O ₄ -based spinels. Journal of Materials Chemistry A, 2015, 3, 21077-21082.	5.2	100
197	A 3.4 V Layered VOPO ₄ Cathode for Na-Ion Batteries. Chemistry of Materials, 2016, 28, 682-688.	3.2	100
198	Cobalt Phosphide Coupled with Heteroatomâ€Doped Nanocarbon Hybrid Electroctalysts for Efficient, Longâ€Life Rechargeable Zinc–Air Batteries. Small, 2017, 13, 1702068.	5.2	100

#	Article	IF	CITATIONS
199	VO ₂ /rGO nanorods as a potential anode for sodium- and lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14750-14758.	5.2	99
200	A facile, low-cost synthesis of high-performance silicon-based composite anodes with high tap density for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2399-2406.	5.2	99
201	Sulfur–Carbon Nanocomposite Cathodes Improved by an Amphiphilic Block Copolymer for High-Rate Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2012, 4, 6046-6052.	4.0	98
202	Effect of Synthesis Conditions on the First Charge and Reversible Capacities of Lithium-Rich Layered Oxide Cathodes. Chemistry of Materials, 2013, 25, 3267-3275.	3.2	98
203	Nitrate additives for lithium batteries: Mechanisms, applications, and prospects. EScience, 2021, 1, 108-123.	25.0	98
204	Activated Li ₂ S as a High-Performance Cathode for Rechargeable Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2014, 5, 3986-3991.	2.1	96
205	A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte. Electrochemistry Communications, 2012, 14, 78-81.	2.3	95
206	Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating. Journal of Materials Chemistry A, 2014, 2, 8696.	5.2	95
207	An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode. Nano Energy, 2016, 26, 224-232.	8.2	95
208	A three-dimensional self-assembled SnS ₂ -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7659-7667.	5.2	95
209	LaSr3Fe3-yCoyO10-δ(0 â‰ y ≤1.5) Intergrowth Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Chemistry of Materials, 2006, 18, 1621-1626.	3.2	94
210	Synthesis and Characterization of P3-Type CoO2-δ. Chemistry of Materials, 2002, 14, 3907-3912.	3.2	92
211	A perspective on electrical energy storage. MRS Communications, 2014, 4, 135-142.	0.8	92
212	Co3O4 nanocrystals coupled with O- and N-doped carbon nanoweb as a synergistic catalyst for hybrid Li-air batteries. Nano Energy, 2015, 12, 852-860.	8.2	92
213	Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. Journal of Materials Chemistry A, 2013, 1, 10209.	5.2	91
214	Understanding the Effect of Co ³⁺ Substitution on the Electrochemical Properties of Lithium-Rich Layered Oxide Cathodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 21826-21833.	1.5	91
215	Delineating the roles of Co ₃ O ₄ and N-doped carbon nanoweb (CNW) in bifunctional Co ₃ O ₄ /CNW catalysts for oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2015, 3, 11615-11623.	5.2	91
216	O―and Nâ€Doped Carbon Nanowebs as Metalâ€Free Catalysts for Hybrid Liâ€Air Batteries. Advanced Energy Materials, 2014, 4, 1301795.	10.2	89

#	Article	IF	CITATIONS
217	Durability of the Li _{1+<i>x</i>} Ti _{2–<i>x</i>} Al _{<i>x</i>} (PO ₄) ₃ Solid Electrolyte in Lithium–Sulfur Batteries. ACS Energy Letters, 2016, 1, 1080-1085.	8.8	89
218	Bi _{0.94} Sb _{1.06} S ₃ Nanorod Cluster Anodes for Sodium-Ion Batteries: Enhanced Reversibility by the Synergistic Effect of the Bi ₂ S ₃ –Sb ₂ 3 Solid Solution. Chemistry of Materials, 2015, 27, 6139-6145.	3.2	88
219	Biomassâ€Derived 3D Carbon Aerogel with Carbon Shellâ€Confined Binary Metallic Nanoparticles in CNTs as an Efficient Electrocatalyst for Microfluidic Direct Ethylene Glycol Fuel Cells. Advanced Energy Materials, 2019, 9, 1803238.	10.2	88
220	Lithium degradation in lithium–sulfur batteries: insights into inventory depletion and interphasial evolution with cycling. Energy and Environmental Science, 2020, 13, 2501-2514.	15.6	88
221	A Honeycombâ€Layered Oxide Cathode for Sodiumâ€Ion Batteries with Suppressed P3–O1 Phase Transition. Advanced Energy Materials, 2017, 7, 1601698.	10.2	87
222	Unraveling the Intricacies of Residual Lithium in High-Ni Cathodes for Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 941-948.	8.8	86
223	Synthesis and Characterization of Nanostructured Pdâ~'Mo Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Journal of Physical Chemistry C, 2008, 112, 12037-12043.	1.5	85
224	Sulfurâ€Immobilized, Activated Porous Carbon Nanotube Composite Based Cathodes for Lithium–Sulfur Batteries. Small, 2017, 13, 1602984.	5.2	85
225	A Lithium–Sulfur Cell Based on Reversible Lithium Deposition from a Li ₂ S Cathode Host onto a Hostlessâ€Anode Substrate. Advanced Energy Materials, 2018, 8, 1801556.	10.2	85
226	Longâ€Life, Highâ€Voltage Acidic Zn–Air Batteries. Advanced Energy Materials, 2016, 6, 1502054.	10.2	84
227	Long Cycle Life, Low Selfâ€Discharge Sodium–Selenium Batteries with High Selenium Loading and Suppressed Polyselenide Shuttling. Advanced Energy Materials, 2018, 8, 1701953.	10.2	84
228	Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15324-15332.	4.0	84
229	Temperature Dependence of Aliovalent-Vanadium Doping in LiFePO ₄ Cathodes. Chemistry of Materials, 2013, 25, 768-781.	3.2	83
230	TiO ₂ -B nanowire arrays coated with layered MoS ₂ nanosheets for lithium and sodium storage. Journal of Materials Chemistry A, 2016, 4, 801-806.	5.2	83
231	A class of polysulfide catholytes for lithium–sulfur batteries: energy density, cyclability, and voltage enhancement. Physical Chemistry Chemical Physics, 2015, 17, 2127-2136.	1.3	82
232	Dendriteâ€Free Lithium Anode via a Homogenous Liâ€Ion Distribution Enabled by a Kimwipe Paper. Advanced Sustainable Systems, 2017, 1, 1600034.	2.7	82
233	Structural Instability of Delithiated Li[sub 1â^'x]Ni[sub 1â^'y]Co[sub y]O[sub 2] Cathodes. Journal of the Electrochemical Society, 2001, 148, A49.	1.3	81
234	A High-Performance All-Solid-State Sodium Battery with a Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67	Td (oxide)	l–Na≺sub: 81

1, 132-138.

#	Article	IF	CITATIONS
235	Impact of Residual Lithium on the Adoption of High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9479-9489.	3.2	81
236	Multivalent-Ion versus Proton Insertion into Battery Electrodes. ACS Energy Letters, 2020, 5, 2367-2375.	8.8	81
237	Synthesis, crystal chemistry, and oxygen permeation properties of LaSr3Fe3â^'xCoxO10 (0≤â‰≇.5). Solid State Ionics, 2001, 140, 89-96.	1.3	80
238	Influence of the Lattice Parameter Difference between the Two Cubic Phases Formed in the 4 V Region on the Capacity Fading of Spinel Manganese Oxides. Chemistry of Materials, 2003, 15, 2954-2961.	3.2	79
239	Inâ€Depth Analysis of the Degradation Mechanisms of Highâ€Nickel, Low/Noâ€Cobalt Layered Oxide Cathodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100858.	10.2	79
240	A Cobalt―and Manganeseâ€Free Highâ€Nickel Layered Oxide Cathode for Longâ€Life, Safer Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, .	10.2	79
241	Highâ€Performance Heterostructured Cathodes for Lithiumâ€Ion Batteries with a Niâ€Rich Layered Oxide Core and a Liâ€Rich Layered Oxide Shell. Advanced Science, 2016, 3, 1600184.	5.6	78
242	Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity. Materials Horizons, 2017, 4, 249-258.	6.4	78
243	Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries. Journal of Power Sources, 2017, 343, 54-59.	4.0	78
244	Ethylene Carbonateâ€Free Electrolytes for Highâ€Nickel Layered Oxide Cathodes in Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901152.	10.2	78
245	A Progress Report on Metal–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2004084.	7.8	78
246	Surface-segregated, high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-temperature cyclability for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1213-1216.	2.3	77
247	Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries. Advanced Energy Materials, 2016, 6, 1501933.	10.2	77
248	Y-Doped NASICON-type LiZr ₂ (PO ₄) ₃ Solid Electrolytes for Lithium-Metal Batteries. Chemistry of Materials, 2017, 29, 7206-7212.	3.2	77
249	Evolution of Exsolved Nanoparticles on a Perovskite Oxide Surface during a Redox Process. Chemistry of Materials, 2018, 30, 2838-2847.	3.2	77
250	A Metal Organic Framework Derived Solid Electrolyte for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001285.	10.2	77
251	Sb-MO _{<i>x</i>} -C (M = Al, Ti, or Mo) Nanocomposite Anodes for Lithium-Ion Batteries. Chemistry of Materials, 2009, 21, 3898-3904.	3.2	76
252	Low cost Pd–W nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry, 2009, 19, 159-165.	6.7	76

ARUMUGAM MANTHIRAM

#	Article	IF	CITATIONS
253	Influence of Lithium Polysulfide Clustering on the Kinetics of Electrochemical Conversion in Lithium–Sulfur Batteries. Chemistry of Materials, 2020, 32, 2070-2077.	3.2	76
254	Sodium-Sulfur Batteries with a Polymer-Coated NASICON-type Sodium-Ion Solid Electrolyte. Matter, 2019, 1, 439-451.	5.0	75
255	Layered lithium cobalt oxide cathodes. Nature Energy, 2021, 6, 323-323.	19.8	75
256	High-Energy-Density, Long-Life Lithium–Sulfur Batteries with Practically Necessary Parameters Enabled by Low-Cost Fe–Ni Nanoalloy Catalysts. ACS Nano, 2021, 15, 8583-8591.	7.3	75
257	Self-Regenerating Co–Fe Nanoparticles on Perovskite Oxides as a Hydrocarbon Fuel Oxidation Catalyst in Solid Oxide Fuel Cells. Chemistry of Materials, 2018, 30, 2515-2525.	3.2	74
258	Towards more environmentally and socially responsible batteries. Energy and Environmental Science, 2020, 13, 4087-4097.	15.6	74
259	Structural Stability and Oxygen Permeation Properties of Sr[sub 3â^'x]La[sub x]Fe[sub 2â^'y]Co[sub y]O[sub 7â^'Î] (0≤≩.3 and 0â‰ÿâ‰⊉.0). Journal of the Electrochemical Society, 2001, 148, J7.	1.3	73
260	Nano-cellular carbon current collectors with stable cyclability for Li–S batteries. Journal of Materials Chemistry A, 2013, 1, 9590.	5.2	73
261	Low-cost, porous carbon current collector with high sulfur loading for lithium–sulfur batteries. Electrochemistry Communications, 2014, 38, 91-95.	2.3	73
262	Catalyst-selective, scalable membraneless alkaline direct formate fuel cells. Applied Catalysis B: Environmental, 2015, 165, 63-67.	10.8	73
263	A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Applied Energy Materials, 2020, 3, 2916-2924.	2.5	73
264	A trifunctional multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG)-coated separator through a layer-by-layer coating strategy for high-energy Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 16805-16811.	5.2	72
265	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithiumâ€lon Batteries. Angewandte Chemie, 2017, 129, 771-774.	1.6	72
266	Boron- and nitrogen-doped reduced graphene oxide coated separators for high-performance Li-S batteries. Journal of Power Sources, 2017, 369, 87-94.	4.0	72
267	Three-Dimensional Graphene–Carbon Nanotube–Ni Hierarchical Architecture as a Polysulfide Trap for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 20627-20634.	4.0	72
268	Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1902872.	10.2	72
269	Insights into Boron-Based Polyanion-Tuned High-Nickel Cathodes for High-Energy-Density Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 8886-8897.	3.2	71
270	Stable Dendrite-Free Sodium–Sulfur Batteries Enabled by a Localized High-Concentration Electrolyte. Journal of the American Chemical Society, 2021, 143, 20241-20248.	6.6	71

#	Article	IF	CITATIONS
271	Influence of doping on the cation ordering and charge–discharge behavior of LiMn1.5Ni0.5â^'xMxO4 (M) Tj E1	7Qq1_1 0.7 5.2	784314 rgB ⁻ 70
272	An Alternative Approach to Enhance the Performance of High Sulfur-Loading Electrodes for Li–S Batteries. ACS Energy Letters, 2016, 1, 136-141.	8.8	70
273	Phosphorus-Rich CuP ₂ Embedded in Carbon Matrix as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 16221-16227.	4.0	69
274	Understanding structural defects in lithium-rich layered oxide cathodes. Journal of Materials Chemistry, 2012, 22, 11550.	6.7	68
275	Suppression of the polysulfide-shuttle behavior in Li–S batteries through the development of a facile functional group on the polypropylene separator. Materials Horizons, 2016, 3, 314-319.	6.4	68
276	Nanostructured Anatase Titania as a Cathode Catalyst for Li–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37119-37124.	4.0	68
277	Precursor-directed formation of hollow Co3O4 nanospheres exhibiting superior lithium storage properties. RSC Advances, 2012, 2, 3187.	1.7	67
278	Microwave-Assisted Solvothermal Synthesis and Characterization of Various Polymorphs of LiVOPO ₄ . Chemistry of Materials, 2013, 25, 1751-1760.	3.2	67
279	Rational Design of High-Loading Sulfur Cathodes with a Poached-Egg-Shaped Architecture for Long-Cycle Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 2205-2211.	8.8	67
280	Low Thermal Expansion RBa(Co,M) ₄ O ₇ Cathode Materials Based on Tetrahedral-Site Cobalt Ions for Solid Oxide Fuel Cells. Chemistry of Materials, 2010, 22, 822-831.	3.2	66
281	Covalently Grafted Polysulfur–Graphene Nanocomposites for Ultrahigh Sulfur-Loading Lithium–Polysulfur Batteries. ACS Energy Letters, 2018, 3, 72-77.	8.8	66
282	Degradation of Highâ€Nickel‣ayered Oxide Cathodes from Surface to Bulk: A Comprehensive Structural, Chemical, and Electrical Analysis. Advanced Energy Materials, 2020, 10, 2001035.	10.2	66
283	Crystal chemistry and properties of mixed ionic-electronic conductors. Journal of Electroceramics, 2011, 27, 93-107.	0.8	65
284	Crossover Effects in Batteries with Highâ€Nickel Cathodes and Lithiumâ€Metal Anodes. Advanced Functional Materials, 2021, 31, 2010267.	7.8	65
285	High-Performance Anode-Free Li–S Batteries with an Integrated Li ₂ S–Electrocatalyst Cathode. ACS Energy Letters, 2022, 7, 583-590.	8.8	65
286	High-Performance Red P-Based P–TiP ₂ –C Nanocomposite Anode for Lithium-Ion and Sodium-Ion Storage. Chemistry of Materials, 2016, 28, 5935-5942.	3.2	64
287	A Polysulfide-Trapping Interface for Electrochemically Stable Sulfur Cathode Development. ACS Applied Materials & Interfaces, 2016, 8, 4709-4717.	4.0	64
288	The role of composition in the atomic structure, oxygen loss, and capacity of layered Li–Mn–Ni oxide cathodes. Journal of Materials Chemistry A, 2014, 2, 1353-1362.	5.2	63

#	Article	IF	CITATIONS
289	Chemical and Electrochemical Lithiation of LiVOPO ₄ Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2014, 26, 3849-3861.	3.2	63
290	Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 317-324.	9.5	63
291	Ambientâ€Temperature Allâ€Solidâ€State Sodium Batteries with a Laminated Composite Electrolyte. Advanced Functional Materials, 2021, 31, 2002144.	7.8	63
292	Advances and Prospects of Highâ€Voltage Spinel Cathodes for Lithiumâ€Based Batteries. Small Methods, 2021, 5, e2001196.	4.6	63
293	Inkjetâ€Printed Lithium–Sulfur Microcathodes for Allâ€Printed, Integrated Nanomanufacturing. Small, 2017, 13, 1603786.	5.2	62
294	3D flower-like hierarchical NiCo ₂ O ₄ architecture on carbon cloth fibers as an anode catalyst for high-performance, durable direct urea fuel cells. Journal of Materials Chemistry A, 2018, 6, 23019-23027.	5.2	62
295	A reversible nonaqueous room-temperature potassium-sulfur chemistry for electrochemical energy storage Materials, 2018, 15, 368-373.	9.5	62
296	Unveiling the Stabilities of Nickelâ€Based Layered Oxide Cathodes at an Identical Degree of Delithiation in Lithiumâ€Based Batteries. Advanced Materials, 2021, 33, e2100804.	11.1	62
297	Origin of Site Disorder and Oxygen Nonstoichiometry in LiMn _{1.5} Ni _{0.5–<i>x</i>} M _{<i>x</i>} O ₄ (M = Cu and Zn) Cathodes with Divalent Dopant Ions. Journal of Physical Chemistry C, 2013, 117, 12465-12471.	1.5	61
298	Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li–S Cells. Journal of Physical Chemistry Letters, 2015, 6, 2163-2169.	2.1	61
299	Structural and Chemical Characterization of Layered Li1-xNi1-yMnyO2-δ (y = 0.25 and 0.5, and 0 ≤(1 â^ x) â‰	Ĵ ₽Ţj ĔTQqI	1 10.784314
300	Mesoporous TiO ₂ â€Sn/C Coreâ€Shell Nanowire Arrays as Highâ€Performance 3D Anodes for Liâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1400403.	10.2	60
301	Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries. Nano Energy, 2014, 9, 94-100.	8.2	60
302	Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides. Journal of Materials Chemistry A, 2015, 3, 2006-2011.	5.2	60
303	Core/Double-Shell Type Gradient Ni-Rich LiNi _{0.76} Co _{0.10} Mn _{0.14} O ₂ with High Capacity and Long Cycle Life for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 24543-24549.	4.0	60
304	β-NaVOPO ₄ Obtained by a Low-Temperature Synthesis Process: A New 3.3 V Cathode for Sodium-Ion Batteries. Chemistry of Materials, 2016, 28, 1503-1512.	3.2	60
305	Lithium–Sulfur Batteries with the Lowest Self-Discharge and the Longest Shelf life. ACS Energy Letters, 2017, 2, 1056-1061.	8.8	60
306	High-Performance Semicrystalline Poly(ether ketone)-Based Proton Exchange Membrane. ACS Applied Materials & Interfaces, 2017, 9, 24527-24537.	4.0	60

#	Article	IF	CITATIONS
307	Insights into the Cathode–Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16451-16461.	4.0	60
308	Comparison of the Chemical Stability of Li1â^'xCoO2 and Li1â^'xNi0.85Co0.15O2 Cathodes. Journal of Solid State Chemistry, 2002, 163, 5-9.	1.4	59
309	Oxygen separation membranes based on intergrowth structures. Solid State Ionics, 2002, 152-153, 647-655.	1.3	59
310	Effect of TiC addition on SnSb–C composite anodes for sodium-ion batteries. Journal of Power Sources, 2014, 269, 848-854.	4.0	59
311	Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries. Small, 2016, 12, 939-950.	5.2	59
312	Rechargeable Aluminumâ€lon Batteries Based on an Openâ€Tunnel Framework. Small, 2017, 13, 1701296.	5.2	59
313	Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries. , 2020, 2, 317-324.		59
314	Chains composed of nanosize metal particles and identifying the factors driving their formation. Applied Physics Letters, 1997, 70, 2469-2471.	1.5	58
315	A pair of metal organic framework (MOF)-derived oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts for zinc-air batteries. Materials Today Energy, 2020, 16, 100405.	2.5	58
316	Rational Design of Coating Ions via Advantageous Surface Reconstruction in Highâ€Nickel Layered Oxide Cathodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2101112.	10.2	58
317	Comparison of the crystal chemistry and electrical properties of La2â^'xAxNiO4 (A = Ca, Sr, and Ba). Materials Research Bulletin, 2000, 35, 411-424.	2.7	57
318	Synthesis and Electrochemical Properties of LiCo[sub 2]O[sub 4] Spinel Cathodes. Journal of the Electrochemical Society, 2002, 149, A162.	1.3	57
319	Highly active Pd and Pd–Au nanoparticles supported on functionalized graphene nanoplatelets for enhanced formic acid oxidation. RSC Advances, 2014, 4, 4028-4033.	1.7	57
320	Sulfur/lithium-insertion compound composite cathodes for Li–S batteries. Journal of Power Sources, 2014, 270, 101-105.	4.0	57
321	Electronic and Electrochemical Properties of Li _{1–<i>x</i>} Mn _{1.5} Ni _{0.5} O ₄ Spinel Cathodes As a Function of Lithium Content and Cation Ordering. Chemistry of Materials, 2015, 27, 6934-6945.	3.2	57
322	Selfâ€īemplated Synthesis of Co―and Nâ€Doped Carbon Microtubes Composed of Hollow Nanospheres and Nanotubes for Efficient Oxygen Reduction Reaction. Small, 2017, 13, 1603437.	5.2	57
323	Rationally Designed High-Sulfur-Content Polymeric Cathode Material for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 6136-6142.	4.0	57
324	Recent Advances in Lithium–Carbon Dioxide Batteries. Small Structures, 2020, 1, 2000027.	6.9	57

ARUMUGAM MANTHIRAM

#	Article	IF	CITATIONS
325	Foldable Solid‧tate Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks. Advanced Materials, 2022, 34, e2201410.	11.1	57
326	Application of Derivative Voltammetry in the Analysis of Methanol Oxidation Reaction. Journal of Physical Chemistry C, 2012, 116, 3827-3832.	1.5	55
327	Highâ€Performance Li/Dissolved Polysulfide Batteries with an Advanced Cathode Structure and High Sulfur Content. Advanced Energy Materials, 2014, 4, 1400897.	10.2	55
328	Enabling high areal capacity for Co-free high voltage spinel materials in next-generation Li-ion batteries. Journal of Power Sources, 2020, 473, 228579.	4.0	55
329	Elemental Foil Anodes for Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 2666-2672.	8.8	55
330	On the Utility of Spinel Oxide Hosts for Magnesium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 22953-22961.	4.0	53
331	Stabilizing ultrahigh-nickel layered oxide cathodes for high-voltage lithium metal batteries. Materials Today, 2021, 44, 15-24.	8.3	53
332	High-efficiency, anode-free lithium–metal batteries with a close-packed homogeneous lithium morphology. Energy and Environmental Science, 2022, 15, 843-854.	15.6	53
333	Co and Fe substitution in YBa ₂ Cu ₃ O _{7â^î^} . Journal of Materials Research, 1988, 3, 248-256.	1.2	52
334	Dual-electrolyte lithium–air batteries: influence of catalyst, temperature, and solid-electrolyte conductivity on the efficiency and power density. Journal of Materials Chemistry A, 2013, 1, 5121.	5.2	52
335	Sulfonated polyether ether ketone/strontium zirconite@TiO ₂ nanocomposite membranes for direct methanol fuel cells. Journal of Materials Chemistry A, 2017, 5, 20497-20504.	5.2	52
336	Sustainable Battery Materials for Nextâ€Generation Electrical Energy Storage. Advanced Energy and Sustainability Research, 2021, 2, 2000102.	2.8	52
337	Nanostructured Li ₂ MnSiO ₄ /C Cathodes with Hierarchical Macroâ€/Mesoporosity for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2014, 24, 5277-5283.	7.8	51
338	Synthesis of LiNiO ₂ at Moderate Oxygen Pressure and Long-Term Cyclability in Lithium-Ion Full Cells. ACS Applied Materials & Interfaces, 2020, 12, 52826-52835.	4.0	51
339	Evoking High-Donor-Number-Assisted and Organosulfur-Mediated Conversion in Lithium–Sulfur Batteries. ACS Energy Letters, 2021, 6, 224-231.	8.8	51
340	Rationally Designed PEGDA–LLZTO Composite Electrolyte for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 30703-30711.	4.0	51
341	Hybrid Lithiumâ€5ulfur Batteries with an Advanced Gel Cathode and Stabilized Lithiumâ€Metal Anode. Advanced Energy Materials, 2018, 8, 1800813.	10.2	50
342	NiSb–Al ₂ O ₃ –C Nanocomposite Anodes with Long Cycle Life for Li-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 811-822.	1.5	49

Arumugam Manthiram

#	Article	IF	CITATIONS
343	Eggshell Membrane-Derived Polysulfide Absorbents for Highly Stable and Reversible Lithium–Sulfur Cells. ACS Sustainable Chemistry and Engineering, 2014, 2, 2248-2252.	3.2	49
344	Zn-Sn Interdigitated Eutectic Alloy Anodes with High Volumetric Capacity for Lithium-Ion Batteries. Joule, 2019, 3, 1051-1063.	11.7	49
345	Long-Life, Ultrahigh-Nickel Cathodes with Excellent Air Storage Stability for High-Energy Density Lithium-Based Batteries. Chemistry of Materials, 2020, 32, 7413-7424.	3.2	49
346	Effect of nickel oxidation state on the structural and electrochemical characteristics of lithium-rich layered oxide cathodes. Journal of Materials Chemistry A, 2015, 3, 22199-22207.	5.2	48
347	Structural and electrochemical characterization of the layered LiNiMnCoO (0â‰⊉â‰⊉) cathodes. Solid State Ionics, 2005, 176, 2251-2256.	1.3	47
348	Factors limiting the electrochemical performance of oxide cathodes. Solid State Ionics, 2006, 177, 2629-2634.	1.3	47
349	Vanadium-Substituted LiCoPO4 Core with a Monolithic LiFePO4 Shell for High-Voltage Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 64-69.	8.8	47
350	An Effective Lithium Sulfide Encapsulation Strategy for Stable Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1701122.	10.2	47
351	Enhanced Interfacial Stability of Hybridâ€Electrolyte Lithiumâ€6ulfur Batteries with a Layer of Multifunctional Polymer with Intrinsic Nanoporosity. Advanced Functional Materials, 2019, 29, 1805996.	7.8	47
352	Synthesis, Crystal Chemistry, and Electrical and Magnetic Properties of Sr3Fe2â^'xCoxO7â^'δ (0â‰ ¤ â‰ 0 .8). Journal of Solid State Chemistry, 2001, 158, 307-314.	1.4	46
353	Controlled synthesis and characterization of carbon-supported Pd ₄ Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Energy and Environmental Science, 2009, 2, 124-132.	15.6	46
354	In Situ Mitigation of First-Cycle Anode Irreversibility in a New Spinel/FeSb Lithium-Ion Cell Enabled via a Microwave-Assisted Chemical Lithiation Process. Chemistry of Materials, 2014, 26, 5905-5913.	3.2	46
355	Hierarchical sulfur electrodes as a testing platform for understanding the high-loading capability of Li-S batteries. Journal of Power Sources, 2016, 334, 179-190.	4.0	46
356	A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries. Journal of Power Sources, 2016, 325, 620-629.	4.0	46
357	Complementary Effects of Mg and Cu Incorporation in Stabilizing the Cobalt-Free LiNiO ₂ Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 43653-43664.	4.0	46
358	Crystal Chemistry of Electrochemically and Chemically Lithiated Layered α _I -LiVOPO ₄ . Chemistry of Materials, 2015, 27, 6699-6707.	3.2	45
359	Edgeâ€Oriented Tungsten Disulfide Catalyst Produced from Mesoporous WO ₃ for Highly Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2016, 6, 1501814.	10.2	45
360	Surface Reconstruction in Li-Rich Layered Oxides of Li-Ion Batteries. Chemistry of Materials, 2017, 29, 7668-7674.	3.2	45

#	Article	IF	CITATIONS
361	Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis. Advanced Energy and Sustainability Research, 2020, 1, 2000015.	2.8	45
362	Covalent Organic Framework as an Efficient Protection Layer for a Stable Lithiumâ€Metal Anode. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
363	Shape-controlled synthesis of high tap density cathode oxides for lithium ion batteries. Physical Chemistry Chemical Physics, 2012, 14, 6724.	1.3	44
364	Nickel-rich layered LiNi _{1â^'x} M _x O ₂ (M = Mn, Fe, and Co) electrocatalysts with high oxygen evolution reaction activity. Journal of Materials Chemistry A, 2015, 3, 16604-16612.	5.2	44
365	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie, 2016, 128, 12975-12980.	1.6	44
366	A nickel-foam@carbon-shell with a pie-like architecture as an efficient polysulfide trap for high-energy Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 15002-15007.	5.2	44
367	Thermodynamics of Antisite Defects in Layered NMC Cathodes: Systematic Insights from High-Precision Powder Diffraction Analyses. Chemistry of Materials, 2020, 32, 1002-1010.	3.2	44
368	Effects of Pt Coverage in Pt@PdCu ₅ /C Core–Shell Electrocatalysts on the Oxygen Reduction Reaction and Methanol Tolerance. Journal of Physical Chemistry C, 2013, 117, 3865-3873.	1.5	43
369	Synthesis and Characterization of Lithium Bis(fluoromalonato)borate for Lithiumâ€lon Battery Applications. Advanced Energy Materials, 2014, 4, 1301368.	10.2	43
370	Carbonized Eggshell Membranes as a Natural and Abundant Counter Electrode for Efficient Dye ensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401524.	10.2	43
371	Phenyl Disulfide Additive for Solutionâ€Mediated Carbon Dioxide Utilization in Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1900453.	10.2	43
372	Toward a Reversible Calciumâ€Sulfur Battery with a Lithiumâ€Ion Mediation Approach. Advanced Energy Materials, 2019, 9, 1803794.	10.2	43
373	Implications of <i>in situ</i> chalcogen substitutions in polysulfides for rechargeable batteries. Energy and Environmental Science, 2021, 14, 5423-5432.	15.6	43
374	Strength analysis of random short-fibre-reinforced metal matrix composite materials. Journal of Materials Science, 1994, 29, 6281-6286.	1.7	42
375	Nanoscale Ni/Mn Ordering in the High Voltage Spinel Cathode LiNi _{0.5} Mn _{1.5} O ₄ . Chemistry of Materials, 2016, 28, 6817-6821.	3.2	42
376	Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System. Chemistry of Materials, 2016, 28, 1832-1837.	3.2	42
377	Ionic Liquid (IL) Laden Metal–Organic Framework (IL-MOF) Electrolyte for Quasi-Solid-State Sodium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24662-24669.	4.0	42
378	Printed microelectrodes for scalable, high-areal-capacity lithium–sulfur batteries. Chemical Communications, 2016, 52, 4282-4285.	2.2	41

#	Article	IF	CITATIONS
379	Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-Ion Solid Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 10612-10617.	4.0	41
380	A Li ₂ Sâ€TiS ₂ â€Electrolyte Composite for Stable Li ₂ Sâ€Based Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901397.	10.2	41
381	Hierarchical tri-functional electrocatalysts derived from bimetallic–imidazolate framework for overall water splitting and rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 8641-8652.	5.2	41
382	Electron diffraction and microscopy study of oxygen ordering in YBa ₂ Cu ₃ O _{7-δ} . Journal of Materials Research, 1990, 5, 9-16.	1.2	40
383	Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated WOx-MoO2 nanorod anodes for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 4082.	6.7	40
384	A Shellâ€Shaped Carbon Architecture with High‣oading Capability for Lithium Sulfide Cathodes. Advanced Energy Materials, 2017, 7, 1700537.	10.2	40
385	Efficient Li–CO ₂ Batteries with Molybdenum Disulfide Nanosheets on Carbon Nanotubes as a Catalyst. ACS Applied Energy Materials, 2019, 2, 8685-8694.	2.5	40
386	In Situ Grown 1T′â€MoTe ₂ Nanosheets on Carbon Nanotubes as an Efficient Electrocatalyst and Lithium Regulator for Stable Lithium–Sulfur Full Cells. Advanced Energy Materials, 2022, 12, .	10.2	40
387	Chemical and structural instabilities of lithium ion battery cathodes. Journal of Power Sources, 2006, 159, 249-253.	4.0	39
388	A Voltage-Enhanced, Low-Cost Aqueous Iron–Air Battery Enabled with a Mediator-Ion Solid Electrolyte. ACS Energy Letters, 2017, 2, 1050-1055.	8.8	39
389	Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23122-23130.	4.0	39
390	Insights into the Improved Chemical Stability against Water of LiF-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries. , 2019, 1, 89-95.		39
391	Delineating the Lithium–Electrolyte Interfacial Chemistry and the Dynamics of Lithium Deposition in Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003293.	10.2	39
392	Nanoengineered Sn–TiC–C composite anode for lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 236-239.	6.7	38
393	Cu2Sb–Al2O3–C nanocomposite alloy anodes with exceptional cycle life for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 3242.	6.7	38
394	High-voltage spinel cathodes for lithium-ion batteries: controlling the growth of preferred crystallographic planes through cation doping. Journal of Materials Chemistry A, 2013, 1, 15334.	5.2	38
395	Rational Design of Lithium–Sulfur Battery Cathodes Based on Experimentally Determined Maximum Active Material Thickness. Journal of the American Chemical Society, 2017, 139, 9229-9237.	6.6	38
396	Ambientâ€Temperature Energy Storage with Polyvalent Metal–Sulfur Chemistry. Small Methods, 2017, 1, 1700217.	4.6	38

#	Article	IF	CITATIONS
397	Modified Highâ€Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 6590-6595.	1.6	38
398	A Facile, Low ost Hotâ€Pressing Process for Fabricating Lithium–Sulfur Cells with Stable Dynamic and Static Electrochemistry. Advanced Materials, 2018, 30, e1805571.	11.1	38
399	Single Ni Atoms and Clusters Embedded in Nâ€Doped Carbon "Tubes on Fibers―Matrix with Bifunctional Activity for Water Splitting at High Current Densities. Small, 2020, 16, e2002511.	5.2	38
400	Delineating the Roles of Mn, Al, and Co by Comparing Three Layered Oxide Cathodes with the Same Nickel Content of 70% for Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 629-642.	3.2	38
401	Room-temperature synthesis of Pd/C cathode catalysts with superior performance for direct methanol fuel cells. Journal of Materials Chemistry A, 2014, 2, 3468.	5.2	37
402	Hydrogen tungsten bronze as a decoking agent for long-life, natural gas-fueled solid oxide fuel cells. Energy and Environmental Science, 2014, 7, 3069.	15.6	37
403	High-Capacity, Aliovalently Doped Olivine LiMn _{1–3<i>x</i>/2} V _{<i>x</i>} â−i _{<i>x</i>/2} PO ₄ Cathodes without Carbon Coating. Chemistry of Materials, 2014, 26, 3018-3026.	3.2	37
404	Pyrrolicâ€Type Nitrogenâ€Doped Hierarchical Macro/Mesoporous Carbon as a Bifunctional Host for Highâ€Performance Thick Cathodes for Lithiumâ€Sulfur Batteries. Small, 2019, 15, e1900690.	5.2	37
405	Influence of Calendering on the Electrochemical Performance of LiNi _{0.9} Mn _{0.05} Al _{0.05} O ₂ Cathodes in Lithium-Ion Cells. ACS Applied Materials & Interfaces, 2021, 13, 42898-42908.	4.0	37
406	Protection of Cobalt-Free LiNiO ₂ from Degradation with Localized Saturated Electrolytes in Lithium-Metal Batteries. ACS Energy Letters, 2022, 7, 2165-2172.	8.8	37
407	Industrialization of Layered Oxide Cathodes for Lithiumâ€ion and Sodiumâ€ion Batteries: A Comparative Perspective. Energy Technology, 2020, 8, 2000723.	1.8	36
408	Xanthogen Polysulfides as a New Class of Electrode Material for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2001658.	10.2	36
409	A Facile Potential Hold Method for Fostering an Inorganic Solidâ€Electrolyte Interphase for Anodeâ€Free Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
410	Cu6Sn5–TiC–C nanocomposite alloy anodes with high volumetric capacity for lithium ion batteries. RSC Advances, 2012, 2, 5411.	1.7	35
411	Proton-Induced Disproportionation of Jahn–Teller-Active Transition-Metal Ions in Oxides Due to Electronically Driven Lattice Instability. Journal of the American Chemical Society, 2020, 142, 21122-21130.	6.6	35
412	Role of Electrolyte in Overcoming the Challenges of LiNiO ₂ Cathode in Lithium Batteries. ACS Energy Letters, 2021, 6, 3809-3816.	8.8	34
413	X-ray spectroscopic study of chromium, nickel, and molybdenum compounds. The Journal of Physical Chemistry, 1980, 84, 2200-2203.	2.9	33
414	MnNiCoO ₄ /N-MWCNT nanocomposite catalyst with high selectivity in membraneless direct formate fuel cells and bifunctional activity for oxygen electrochemistry. Catalysis Science and Technology, 2015, 5, 2072-2075.	2.1	33

#	Article	IF	CITATIONS
415	High-Performance Zn–TiC–C Nanocomposite Alloy Anode with Exceptional Cycle Life for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 14801-14807.	4.0	33
416	Unveiling the Charge Storage Mechanism in Nonaqueous and Aqueous Zn/Na ₃ V ₂ (PO ₄) ₂ F ₃ Batteries. ACS Applied Energy Materials, 2020, 3, 5015-5023.	2.5	32
417	Insights into the Crossover Effects in Cells with Highâ€Nickel Layered Oxide Cathodes and Silicon/Graphite Composite Anodes. Advanced Energy Materials, 2022, 12, .	10.2	32
418	Hydrocarbon-fueled solid oxide fuel cells with surface-modified, hydroxylated Sn/Ni–Ce _{0.8} Gd _{0.2} O _{1.9} heterogeneous catalyst anode. Journal of Materials Chemistry A, 2014, 2, 17041-17046.	5.2	31
419	Controlling the polysulfide diffusion in lithium-sulfur batteries with a polymer membrane with intrinsic nanoporosity. Materials Today Energy, 2018, 7, 98-104.	2.5	31
420	Synthesis Control of Layered Oxide Cathodes for Sodium-Ion Batteries: A Necessary Step Toward Practicality. Chemistry of Materials, 2020, 32, 8431-8441.	3.2	31
421	Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition. Chemistry of Materials, 2021, 33, 3457-3466.	3.2	31
422	Surface-Modified Na(Ni _{0.3} Fe _{0.4} Mn _{0.3})O ₂ Cathodes with Enhanced Cycle Life and Air Stability for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11735-11742.	2.5	31
423	Chemical and structural instability of the chemically delithiated (1 $\hat{a} \in z$) Li[Li ₁ _/ ₃ Mn ₂ _{/3}]O ₂ $\hat{A}(z)$ Li[Co _{1$\hat{a} \in y$} Niy]O ₂ (0 $\hat{a} \gg \hat{p} \hat{a} \gg \mathbf{q}$ and 0 $\hat{a} \gg \mathbf{q} \hat{a} \gg \mathbf{q}$) solid solution cathodes. Journal of Materials Chemistry. 2008. 18. 190-198.	6.7	30
424	Characterization of Sr2.7Ln0.3Fe1.4Co0.6O7 (Ln=La, Nd, Sm, Gd) intergrowth oxides as cathodes for solid oxide fuel cells. Solid State Ionics, 2009, 180, 1478-1483.	1.3	30
425	Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. Applied Physics Letters, 2012, 100, .	1.5	30
426	Three-dimensional Fe3O4/N-graphene sponge as an efficient organosulfide host for high-performance lithium-organosulfur batteries. Energy Storage Materials, 2019, 23, 88-94.	9.5	30
427	Structural impact of Zn-insertion into monoclinic V ₂ (PO ₄) ₃ : implications for Zn-ion batteries. Journal of Materials Chemistry A, 2019, 7, 7159-7167.	5.2	30
428	Hydrocarbon blend membranes with suppressed chemical crossover for redox flow batteries. RSC Advances, 2012, 2, 5554.	1.7	29
429	Structural and Electrochemical Characterization of (NH ₄) ₂ HPO ₄ -Treated Lithium-Rich Layered Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1661-A1667.	1.3	29
430	Aliovalent Substitution of V ³⁺ for Co ²⁺ in LiCoPO ₄ by a Low-Temperature Microwave-Assisted Solvothermal Process. Chemistry of Materials, 2016, 28, 1847-1853.	3.2	29
431	Development of low-cost sodium-aqueous polysulfide hybrid batteries. Energy Storage Materials, 2019, 19, 346-351.	9.5	29
432	High-rate, high-density FeSb–TiC–C nanocomposite anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3891-3900.	5.2	28

#	Article	IF	CITATIONS
433	Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li ₂ S in lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 13242-13251.	5.2	28
434	A Selfâ€Healable Sulfide/Polymer Composite Electrolyte for Longâ€Life, Lowâ€Lithiumâ€Excess Lithiumâ€Metal Batteries. Advanced Functional Materials, 2022, 32, 2106680.	7.8	28
435	Chemical synthesis, microstructure, and magnetic properties of chains composed of ultrafine Fe–Co–B particles. Journal of Applied Physics, 1996, 80, 4534-4540.	1.1	27
436	Lithium diffusivity in antimony-based intermetallic and FeSb–TiC composite anodes as measured by GITT. Physical Chemistry Chemical Physics, 2015, 17, 28837-28843.	1.3	27
437	Aqueous Electrochemical Energy Storage with a Mediatorâ€lon Solid Electrolyte. Advanced Energy Materials, 2017, 7, 1602454.	10.2	27
438	Quantitative Analysis of Electrochemical and Electrode Stability with Low Self-Discharge Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20318-20323.	4.0	27
439	Designing Lithium–Sulfur Batteries with High-Loading Cathodes at a Lean Electrolyte Condition. ACS Applied Materials & Interfaces, 2018, 10, 43749-43759.	4.0	27
440	Toward sustainable batteries. Nature Sustainability, 2021, 4, 379-380.	11.5	27
441	Ethylene Carbonateâ€Free Electrolytes for Stable, Safer Highâ€Nickel Lithiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	27
442	Rapid Microwaveâ€Assisted Solvothermal Synthesis of Methanol Tolerant Pt–Pd–Co Nanoalloy Electrocatalysts. Fuel Cells, 2010, 10, 375-383.	1.5	26
443	Thermal stability of spinel Li1.1Mn1.9â^'yMyO4â^'zFz (M = Ni, Al, and Li, O â‰9≤0.3, and O â‰æâ‰¤0.2) catho for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 10165.	odes 6.7	26
444	Effects of bifunctional metal sulfide interlayers on photovoltaic properties of organic–inorganic hybrid solar cells. RSC Advances, 2013, 3, 5412.	1.7	26
445	Electrical energy storage: Materials challenges and prospects. MRS Bulletin, 2016, 41, 624-631.	1.7	26
446	Transforming waste newspapers into nitrogen-doped conducting interlayers for advanced Li–S batteries. Sustainable Energy and Fuels, 2017, 1, 444-449.	2.5	26
447	A rationally designed polysulfide-trapping interface on the polymeric separator for high-energy Li–S batteries. Materials Today Energy, 2017, 6, 72-78.	2.5	26
448	Chemistry of Sputter-Deposited Lithium Sulfide Films. Journal of the American Chemical Society, 2017, 139, 10669-10676.	6.6	26
449	Long-Life Polysulfide–Polyhalide Batteries with a Mediator-Ion Solid Electrolyte. ACS Applied Energy Materials, 2019, 2, 3445-3451.	2.5	26
450	Crystal chemistry and electrochemical properties of Ln(Sr,Ca) ₃ (Fe,Co) ₃ O ₁₀ intergrowth oxide cathodes for solid oxidefuel cells. Journal of Materials Chemistry, 2011, 21, 2482-2488.	6.7	25

#	Article	IF	CITATIONS
451	Electrochemical Energy Storage with Mediator-Ion Solid Electrolytes. Joule, 2017, 1, 453-462.	11.7	25
452	Delineating the Capacity Fading Mechanisms of Na(Ni _{0.3} Fe _{0.4} Mn _{0.3})O ₂ at Higher Operating Voltages in Sodium-Ion Cells. Chemistry of Materials, 2020, 32, 7389-7396.	3.2	25
453	Lithium-based polyanion oxide cathodes. Nature Energy, 2021, 6, 844-845.	19.8	25
454	Sr[sub 3â^'x]La[sub x]Fe[sub 2â^'y]Co[sub y]O[sub 7â^'Î] (0.3â‰ x â‰ 0 .6 and 0â‰ y â‰ 0 .6) Intergrowth Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A1255.	1.3	24
455	Characterization of (Y1-xCax)BaCo4-yZnyO7 as cathodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 15295-15303.	3.8	24
456	Magnetic measurements as a viable tool to assess the relative degrees of cation ordering and Mn3+ content in doped LiMn1.5Ni0.5O4 spinel cathodes. Journal of Materials Chemistry A, 2013, 1, 10745.	5.2	24
457	Overcoming phase instability of RBaCo2O5+ \hat{I} (R=Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells. Solid State Ionics, 2013, 253, 81-87.	1.3	24
458	Understanding the Redox Obstacles in High Sulfur-Loading Li–S Batteries and Design of an Advanced Gel Cathode. Journal of Physical Chemistry Letters, 2016, 7, 1392-1399.	2.1	24
459	Oligoanilines as a suppressor of polysulfide shuttling in lithium–sulfur batteries. Materials Horizons, 2017, 4, 908-914.	6.4	24
460	Bifunctional Binder with Nucleophilic Lithium Polysulfide Immobilization Ability for High-Loading, High-Thickness Cathodes in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 17393-17399.	4.0	24
461	Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries. Electrochimica Acta, 2021, 367, 137482.	2.6	24
462	Creating a rechargeable world. CheM, 2022, 8, 312-318.	5.8	24
463	Moltenâ€Salt Synthesis of O3â€Type Layered Oxide Single Crystal Cathodes with Controlled Morphology towards Longâ€Life Sodiumâ€Ion Batteries. Small, 2022, 18, e2106927.	5.2	24
464	Effects of Chemical versus Electrochemical Delithiation on the Oxygen Evolution Reaction Activity of Nickel-Rich Layered Li <i>M</i> O ₂ . Journal of Physical Chemistry Letters, 2015, 6, 3787-3791.	2.1	23
465	A High-Performance Sodium-Ion Full Cell with a Layered Oxide Cathode and a Phosphorous-Based Composite Anode. Journal of the Electrochemical Society, 2017, 164, A321-A326.	1.3	23
466	Wet-CO ₂ Pretreatment Process for Reducing Residual Lithium in High-Nickel Layered Oxides for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 27096-27105.	4.0	23
467	Microwave-assisted chemical insertion: a rapid technique for screening cathodes for Mg-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2309-2318.	5.2	22
468	Long-life LiNi0.5Mn1.5O4/graphite lithium-ion cells with an artificial graphite-electrolyte interface. Energy Storage Materials, 2021, 43, 499-508.	9.5	22

#	Article	IF	CITATIONS
469	(Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells. Journal of Power Sources, 2012, 214, 7-14.	4.0	21
470	Highâ€Performance M _{<i>x</i>} Sb–Al ₂ O ₃ –C (M=Fe, Ni, and Cu) Nanocompositeâ€Alloy Anodes for Sodiumâ€lon Batteries. Energy Technology, 2013, 1, 319-326.	1.8	21
471	Understanding the Influence of Composition and Synthesis Temperature on Oxygen Loss, Reversible Capacity, and Electrochemical Behavior of <i>x</i> Li ₂ MnO ₃ -(1 –) Tj ETQq1 1 0.7843 23553-23558.	314 rgBT /0 1.5	Overlock 10
472	Fast and Simple Ag/Cu Ion Exchange on Cu Foil for Anode-Free Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17454-17460.	4.0	21
473	Elucidating the Electrochemical Activity of Electrolyte-Insoluble Polysulfide Species in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2016, 163, A2109-A2116.	1.3	20
474	A membraneless alkaline direct liquid fuel cell (DLFC) platform developed with a catalyst-selective strategy. Journal of Power Sources, 2016, 331, 340-347.	4.0	20
475	A core–shell cathode substrate for developing high-loading, high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 24841-24847.	5.2	20
476	Freestanding vanadium nitride nanowire membrane as an efficient, carbon-free gas diffusion cathode for Li–CO2 batteries. Energy Storage Materials, 2020, 31, 95-104.	9.5	20
477	Vanishing of superconductivity at a transition from itinerantâ€electron to smallâ€polaron conduction in nominal Bi4â^'xPbx(Sr3Ca)Ca2âr'xYxCu4O16. Applied Physics Letters, 1988, 53, 2695-2697.	1.5	19
478	A Rapid Microwave-Assisted Solvothermal Approach to Lower-Valent Transition Metal Oxides. Inorganic Chemistry, 2013, 52, 13087-13093.	1.9	19
479	An Artificial Protective Coating toward Dendriteâ€Free Lithiumâ€Metal Anodes for Lithium–Sulfur Batteries. Energy Technology, 2020, 8, 2000348.	1.8	19
480	The critical effect of water content in the electrolyte on the reversible electrochemical performance of Zn–VPO ₄ F cells. Journal of Materials Chemistry A, 2020, 8, 8262-8267.	5.2	19
481	Allâ€Solidâ€State Sodium Batteries with a Polyethylene Glycol Diacrylate–Na ₃ Zr ₂ Si ₂ PO ₁₂ Composite Electrolyte. Advanced Energy and Sustainability Research, 2021, 2, 2000061.	2.8	19
482	Paving Pathways Toward Longâ€Life Graphite/LiNi _{0.5} Mn _{1.5} O ₄ Full Cells: Electrochemical and Interphasial Points of View. Advanced Functional Materials, 2022, 32, .	7.8	19
483	Lithium Insertion Compounds. Materials Research Society Symposia Proceedings, 1988, 135, 391.	0.1	18
484	Rapid Microwave-Assisted Solvothermal Synthesis of Non-Olivine <i>Cmcm</i> Polymorphs of LiMPO ₄ (M = Mn, Fe, Co, and Ni) at Low Temperature and Pressure. Inorganic Chemistry, 2015, 54, 10015-10022.	1.9	18
485	Interdigitated Eutectic Alloy Foil Anodes for Rechargeable Batteries. ACS Energy Letters, 2017, 2, 2422-2423.	8.8	18
486	Extending the limits of powder diffraction analysis: Diffraction parameter space, occupancy defects, and atomic form factors. Review of Scientific Instruments, 2018, 89, 093002.	0.6	18

#	Article	IF	CITATIONS
487	A review on infiltration techniques for energy conversion and storage devices: from fundamentals to applications. Sustainable Energy and Fuels, 2021, 5, 5024-5037.	2.5	18
488	Factors influencing the crystal chemistry of chemically delithiated layered HxNi1â^'yâ^'zMnyCozO2. Journal of Materials Chemistry, 2006, 16, 1726-1733.	6.7	17
489	Phase Stability, Oxygen-Storage Capability, and Electrocatalytic Activity in Solid Oxide Fuel Cells of (Y,) Tj ETQq1 1 28, 9077-9087.	0.78431 3.2	4 rgBT /Ov∈ 17
490	Formation and effect of orientation domains in layered oxide cathodes of lithium-ion batteries. Acta Materialia, 2016, 108, 264-270.	3.8	17
491	Aluminum–Silicon Alloy Foils as Low-Cost, Environmentally Friendly Anodes for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 14515-14524.	3.2	17
492	Lithium Trithiocarbonate as a Dualâ€Function Electrode Material for Highâ€Performance Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	17
493	Topochemically controlled hydrogen reduction of scheelite-related rare-earth metal molybdates. Journal of the Chemical Society Dalton Transactions, 1981, , 668.	1.1	16
494	Superior power density solid oxide fuel cells by enlarging the three-phase boundary region of a NiO–Ce0.8Gd0.2O1.9 composite anode through optimized surface structure. Physical Chemistry Chemical Physics, 2013, 15, 14966.	1.3	16
495	Unravelling the low thermal expansion coefficient of cation-substituted YBaCo4O7+δ. Journal of Power Sources, 2016, 307, 454-461.	4.0	16
496	Effect of Ca substitution on the electrochemical properties of the Ruddlesden-Popper oxides Sr 3.2-x Ca x Ln 0.8 Fe 1.5 Co 1.5 O 10-δ. Journal of Power Sources, 2018, 374, 249-256.	4.0	16
497	An ant-nest-like cathode substrate for lithium-sulfur batteries with practical cell fabrication parameters. Energy Storage Materials, 2019, 18, 491-499.	9.5	16
498	Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi _{2–<i>y</i>} Mn _{<i>y</i>} O ₄ (0.4 ≤i>y ≤). Chemistry of Materials, 2015, 27, 7729-7733.	3.2	15
499	Electrochemical Energy Storage with an Aqueous Zinc–Quinone Chemistry Enabled by a Mediator-Ion Solid Electrolyte. ACS Applied Energy Materials, 2018, 1, 273-277.	2.5	15
500	Electrochemical properties of Sr2.7-xCaxLn0.3Fe2-yCoyO7-δ cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 1896-1904.	3.8	15
501	Synthesis, Characterization, and Electrochemical Properties of Amorphous CrO2 â^' î´â€‰â€‰â€‰â€% Journal of the Electrochemical Society, 1997, 144, 3077-3081.	% <u>q(</u> ậ€‰0á	à€‰â©½∄ 14
502	Delithiation/lithiation behaviors of three polymorphs of LiVOPO ₄ . Chemical Communications, 2018, 54, 13224-13227.	2.2	14
503	Toward Long-Life, Ultrahigh-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries: Optimizing the Interphase Chemistry with a Dual-Functional Polymer. Chemistry of Materials, 2020, 32, 759-768.	3.2	14
504	Essential effect of the electrolyte on the mechanical and chemical degradation of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ cathodes upon long-term cycling. lournal of Materials Chemistry A. 2021. 9. 2111-2119.	5.2	14

#	Article	IF	CITATIONS
505	Polyanionic insertion hosts for aqueous rechargeable batteries. Journal of Materials Chemistry A, 2022, 10, 6376-6396.	5.2	14
506	Hole concentration and Tc in Tl2â^'yBa2Ca1â^'zYzCu2O8â^'x. Journal of Solid State Chemistry, 1992, 98, 343-349.	1.4	13
507	High temperature phase stabilities and electrochemical properties of InBaCo4â^'xZnxO7 cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2011, 56, 5740-5745.	2.6	13
508	Effects of Ga substitution on the high temperature properties of the n=3 Ruddlesden Popper system LaSr3Fe1.5â^'x/2Co1.5â^'x/2GaxO10â^'δ (0â‰ ¤ â‰ 9 .8). Solid State Ionics, 2011, 192, 241-244.	1.3	13
509	N-heterocycles tethered graphene as efficient metal-free catalysts for an oxygen reduction reaction in fuel cells. Journal of Materials Chemistry A, 2013, 1, 10166.	5.2	13
510	Characterization of Layered LiMO ₂ Oxides for the Oxygen Evolution Reaction of Metal–Air Batteries (M=Mn, Co, Ni). ChemPlusChem, 2015, 80, 422-427.	1.3	13
511	A Membraneless Direct Isopropanol Fuel Cell (DIPAFC) Operated with a Catalyst-Selective Principle. Journal of Physical Chemistry C, 2018, 122, 13558-13563.	1.5	13
512	Scalable Membraneless Direct Liquid Fuel Cells Based on a Catalystâ€ S elective Strategy. Energy and Environmental Materials, 2018, 1, 13-19.	7.3	13
513	High-Energy, Single-Ion-Mediated Nonaqueous Zinc-TEMPO Redox Flow Battery. ACS Applied Materials & Interfaces, 2020, 12, 48654-48661.	4.0	13
514	Anodeâ€Free Lithium–Sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
515	THE ROLE OF OXYGEN IN YBa2Cu3O7â^'δ. International Journal of Modern Physics B, 1988, 02, 379-391.	1.0	12
516	Investigation of hydrogen content in chemically delithiated lithium-ion battery cathodes using prompt gamma activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2005, 265, 321-328.	0.7	12
517	Thermodynamic Stability of Transitionâ€Metalâ€Substituted LiMn _{2â^'<i>x</i>} M _{<i>x</i>} O ₄ (M=Cr, Fe, Co, and Ni) Spinels. ChemPhysChem, 2016, 17, 1973-1978.	1.0	12
518	Metal nanofoams via a facile microwave-assisted solvothermal process. Chemical Communications, 2017, 53, 865-868.	2.2	12
519	A mediator-ion nitrobenzene - iodine nonaqueous redox flow battery with asymmetric solvents. Energy Storage Materials, 2020, 29, 266-272.	9.5	12
520	Mechanical Pulverization of Co-Free Nickel-Rich Cathodes for Improved High-Voltage Cycling of Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 6996-7005.	2.5	12
521	Synthesis, crystal chemistry, and electrical, oxygen permeation, and magnetic properties of LaSr3GaFe2 â°' xCoxO10 â°' Î′(0 ≤ ≤ and 0 ≤ ≤2). Journal of Materials Chemistry, 2002, 12, 2390-2395.	6.7	11
522	Electrochemical Properties of Ln(Sr,Ca)3(Fe,Co)3O10 + Gd0.2Ce0.8O1.9 Composite Cathodes for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2011, 158, B1206.	1.3	11

#	Article	IF	CITATIONS
523	Ni–M (M = Sn and Sb) intermetallic-based catalytic functional layer as a built-in safeguard for hydrocarbon-fueled solid oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 21824-21831.	5.2	11
524	Toward Reversible Room-Temperature Calcium-Ion Batteries. CheM, 2018, 4, 1200-1202.	5.8	11
525	CO ₂ -tolerant (Y,Tb)Ba(Co,Ga) ₄ O ₇ cathodes with low thermal expansion for solid oxide fuel cells. Journal of Materials Chemistry A, 2019, 7, 8540-8549.	5.2	11
526	Mass Transfer of Divalent Ions in an Oxide Host: Comparison of Mg ²⁺ and Zn ²⁺ Diffusion in Hexagonal K <i>_x</i> W ₃ O ₉ Bronze. Chemistry of Materials, 2019, 31, 2296-2307.	3.2	11
527	Dysprosium doping effects on perovskite oxides for air and fuel electrodes of solid oxide cells. Journal of Power Sources, 2021, 497, 229873.	4.0	11
528	Stable Sodium-Based Batteries with Advanced Electrolytes and Layered-Oxide Cathodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 28865-28872.	4.0	11
529	Effects of In substitution in Y1â^'In BaCo3ZnO7+ (0Ââ‰ÂxÂâ‰Â0.5) cathodes for intermediate temperature soli oxide fuel cells. Journal of Power Sources, 2014, 271, 252-261.	d 4.0	10
530	Sensitivity and Intricacy of Cationic Substitutions on the First Charge/Discharge Cycle of Lithium-Rich Layered Oxide Cathodes. Journal of the Electrochemical Society, 2015, 162, A1662-A1666.	1.3	10
531	Synthesis and characterization of Ca3-xLaxCo4-yCuyO9+ \hat{i} cathodes for intermediate temperature solid oxide fuel cells. Ceramics International, 2022, 48, 455-462.	2.3	10
532	Operating Highâ€Energy Lithiumâ€Metal Pouch Cells with Reduced Stack Pressure Through a Rational Lithiumâ€Host Design. Advanced Energy Materials, 2022, 12, .	10.2	10
533	Nextâ€Generation Energy Harvesting and Storage Technologies for Robots Across All Scales. Advanced Intelligent Systems, 2023, 5, .	3.3	10
534	Low-cost, Mo(S,Se)2-free superstrate-type solar cells fabricated with tunable band gap Cu2ZnSn(S1â~'xSex)4 nanocrystal-based inks and the effect of sulfurization. RSC Advances, 2013, 3, 19946.	1.7	9
535	Effect of interfacial dipoles on charge traps in organic–inorganic hybrid solar cells. Journal of Materials Chemistry A, 2013, 1, 3258.	5.2	9
536	Pyridine- and pyrimidine-functionalized poly(sulfone)s: performance-enhancing crosslinkers for acid/base blend proton exchange membranes used in direct methanol fuel cells. RSC Advances, 2013, 4, 2167-2176.	1.7	9
537	Electrochemical Energy Storage with an Aqueous Quinone–Air Chemistry. ACS Applied Energy Materials, 2018, 1, 2424-2428.	2.5	9
538	Less pore equals more. Nature Energy, 2019, 4, 908-909.	19.8	9
539	Surface Stabilization with Fluorine of Layered Ultrahigh-Nickel Oxide Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 4514-4522.	3.2	9
540	Ln(Sr,Ca) ₃ (Fe,Co) ₃ O ₁₀ Intergrowth Oxide Cathodes for Solid Oxide Fuel Cells. ECS Transactions, 2011, 35, 2137-2145.	0.3	8

#	Article	IF	CITATIONS
541	Improved phase stability and electrochemical performance of (Y,In,Ca)BaCo 3 ZnO 7+l̂´ cathodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 19722-19730.	3.8	8
542	A Zinc–Cerium Cell for Energy Storage Using a Sodiumâ€lon Exchange Membrane. Advanced Sustainable Systems, 2017, 1, 1700082.	2.7	8
543	Aqueous Polysulfide–Air Battery with a Mediator-Ion Solid Electrolyte and a Copper Sulfide Catalyst for Polysulfide Redox. ACS Applied Energy Materials, 2018, 1, 7230-7236.	2.5	8
544	Effects of trivalent dopants on phase stability and catalytic activity of YBaCo ₄ O ₇ -based cathodes in solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 16412-16420.	5.2	8
545	Covalent Organic Framework as an Efficient Protection Layer for a Stable Lithiumâ€Metal Anode. Angewandte Chemie, 2022, 134, .	1.6	8
546	Thiometallate-mediated polysulfide chemistry and lithium stabilization for stable anode-free lithium-sulfur batteries. Cell Reports Physical Science, 2022, 3, 100808.	2.8	8
547	La1.85Sr1.15Cu2â^'xCoxO6+δ intergrowth oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2012, 70, 375-381.	2.6	7
548	A strategically managed rechargeable battery system with a neutral methyl viologen anolyte and an acidic air-cathode enabled by a mediator-ion solid electrolyte. Sustainable Energy and Fuels, 2018, 2, 1452-1457.	2.5	7
549	A Unique Singleâ€Ion Mediation Approach for Crossoverâ€Free Nonaqueous Redox Flow Batteries with a Na + â€Ion Solid Electrolyte. Small Methods, 2020, 4, 1900697.	4.6	7
550	Intrinsic Li Distribution in Layered Transition-Metal Oxides Using Low-Dose Scanning Transmission Electron Microscopy and Spectroscopy. Chemistry of Materials, 2021, 33, 4638-4650.	3.2	7
551	Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron. ACS Applied Energy Materials, 2021, 4, 13297-13306.	2.5	7
552	High-performance blend membranes composed of an amphoteric copolymer containing supramolecular nanosieves for direct methanol fuel cells. RSC Advances, 2013, 3, 6759.	1.7	6
553	Identifying the Pairing Mechanism in High-Tc Superconductors. Materials Research Society Symposia Proceedings, 1989, 156, 339.	0.1	5
554	Fine magnetic particles in layered silicates and zeolites. IEEE Transactions on Magnetics, 1995, 31, 3784-3786.	1.2	5
555	High-performance Y 0.9 In 0.1 BaCo 3 (Zn,Fe)O 7Â+ÂÎ [^] swedenborgite -type oxide cathodes for reduced temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 1186-1194.	3.8	5
556	A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions: Nano-Co3O4-Deposited La0.5Sr0.5MnO3 via Infiltration. Molecules, 2021, 26, 277.	1.7	5
557	Nanostructured Composite Foils Produced Via Accumulative Roll Bonding as Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2022, 14, 11408-11414.	4.0	5
558	Anodeâ€Free Lithium–Sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules. Angewandte Chemie, 2022, 134, .	1.6	5

#	Article	IF	CITATIONS
559	CRYSTAL CHEMISTRY AND SUPERCONDUCTIVITY IN THE COPPER OXIDES. , 1991, , 1-56.		4
560	Accessing a highâ€voltage nonaqueous hybrid flow battery with a sodiumâ€methylphenothiazine chemistry and a sodiumâ€ion solid electrolyte. Energy Storage, 2022, 4, e281.	2.3	4
561	An In-Depth Analysis of the Transformation of Tin Foil Anodes during Electrochemical Cycling in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 120544.	1.3	4
562	Understanding Znâ€lon Insertion Chemistry through Nonaqueous Electrochemical Investigation of 2Hâ€NbSe 2. Advanced Materials Interfaces, 2021, 8, 2100878.	1.9	3
563	Understanding the Limited Electrochemical Zn-Ion Insertion into 2H-MoS2 and 2H-WS2: A Case Study of 2H-NbS2. ACS Applied Energy Materials, 2021, 4, 8849-8856.	2.5	3
564	Nonaqueous hybrid redox flow energy storage with a sodium–TEMPO chemistry and a single-ion solid electrolyte separator. Energy Advances, 2022, 1, 21-27.	1.4	3
565	A Facile Potential Hold Method for Fostering an Inorganic Solidâ€Electrolyte Interphase for Anodeâ€Free Lithiumâ€Metal Batteries. Angewandte Chemie, 0, , .	1.6	3
566	Relative Reactivity Trends OP High Temperature Superconductor Phases. Materials Research Society Symposia Proceedings, 1992, 275, 711.	0.1	2
567	Synthesis of Wc-Co Nanocomposites Using Polymer as Carbon Source. Materials Research Society Symposia Proceedings, 1994, 346, 463.	0.1	2
568	Amorphous and Nanocrystalline Oxide Electrodes for Rechargeable Lithium Batteries. Materials Research Society Symposia Proceedings, 1997, 496, 421.	0.1	2
569	2,5 <scp>â€Dimercapto</scp> â€1,3,4â€Thiadiazole (<scp>DMCT</scp>)â€Based Polymers for Rechargeable Metal–Sulfur Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	2
570	John Goodenough's 100th Birthday Celebration: His Impact on Science and Humanity. ACS Energy Letters, 2022, 7, 2404-2406.	8.8	2
571	Chemistry of electron doped Ln2â^'xCexCuO4 superconductors. Journal of Electronic Materials, 1993, 22, 1195-1198.	1.0	1
572	A New Route for The Synthesis of Reduced Transition Metal Oxides Using Borohydrides. Materials Research Society Symposia Proceedings, 1994, 346, 69.	0.1	1
573	Lithium-Sulfur Batteries: Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide (Adv. Energy Mater. 18/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	1
574	Energy Spotlight. ACS Energy Letters, 2019, 4, 2763-2769.	8.8	1
575	In Honor of Nobel Laureate John B. Goodenough. Advanced Energy Materials, 2021, 11, 2002817.	10.2	1
576	Principles and Challenges of Lithium–Sulfur Batteries. Modern Aspects of Electrochemistry, 2022, , 1-18.	0.2	1

1 10.

#	Article	IF	CITATIONS
577	Editors' Choice—A Fruitful Transition of John B. Goodenough from Oxford to the University of Texas at Austin. Journal of the Electrochemical Society, 2022, 169, 034520.	1.3	1
578	Crystal Chemistry of Chemically Delithiated Layered Oxide Cathodes of Lithium Ion Batteries. Materials Research Society Symposia Proceedings, 2002, 756, 1.	0.1	0
579	DESIGNING CHEMICALLY AND STRUCTURALLY STABLE CATHODE HOSTS FOR LITHIUM ION CELLS. , 2002, , .		Ο
580	Factors Influencing the Lithium Extraction Rate in Layered Oxide Cathodes of Lithium Ion Cells. Materials Research Society Symposia Proceedings, 2004, 835, K11.11.1.	0.1	0
581	Free Radicals: A Marriage of Solid State Science and Electrochemistry. Electrochemical Society Interface, 2020, 29, 34-35.	0.3	Ο
582	Correction to "Surface Stabilization with Fluorine of Layered Ultrahigh-Nickel Oxide Cathodes for Lithium-Ion Batteries― Chemistry of Materials, 2022, 34, 5748-5748.	3.2	0