Masakazu Yoshimori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmosphere - Ocean, 2001, 39, 361-428.	1.6	604
2	Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison. Journal of Climate, 2013, 26, 5782-5809.	3.2	208
3	Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 2012, 39, .	4.0	185
4	Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Climate of the Past, 2013, 9, 1111-1140.	3.4	157
5	Instability of Glacial Climate in a Model of the Ocean- Atmosphere-Cryosphere System. Science, 2002, 295, 1489-1493.	12.6	131
6	Equilibrium Response of an Atmosphere–Mixed Layer Ocean Model to Different Radiative Forcing Agents: Global and Zonal Mean Response. Journal of Climate, 2008, 21, 4399-4423.	3.2	128
7	Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophysical Research Letters, 2013, 40, 3175-3179.	4.0	108
8	Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Climate Dynamics, 2007, 28, 409-423.	3.8	94
9	State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Science Advances, 2017, 3, e1600446.	10.3	86
10	Externally Forced and Internal Variability in Ensemble Climate Simulations of the Maunder Minimum. Journal of Climate, 2005, 18, 4253-4270.	3.2	76
11	Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM. Geoscientific Model Development, 2013, 6, 819-836.	3.6	76
12	Can the Last Glacial Maximum constrain climate sensitivity?. Geophysical Research Letters, 2012, 39, .	4.0	68
13	A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments. Journal of Climate, 2009, 22, 3374-3395.	3.2	64
14	Dependency of Feedbacks on Forcing and Climate State in Physics Parameter Ensembles. Journal of Climate, 2011, 24, 6440-6455.	3.2	63
15	Structural Similarities and Differences in Climate Responses to CO2 Increase between Two Perturbed Physics Ensembles. Journal of Climate, 2010, 23, 1392-1410.	3.2	62
16	Northern Hemispheric Trends of Pressure Indices and Atmospheric Circulation Patterns in Observations, Reconstructions, and Coupled GCM Simulations. Journal of Climate, 2005, 18, 3968-3982.	3.2	51
17	Perturbed physics ensemble using the MIROC5 coupled atmosphere–ocean GCM without flux corrections: experimental design and results. Climate Dynamics, 2012, 39, 3041-3056.	3.8	49
18	The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. Journal of Advances in Modeling Earth Systems, 2016, 8, 1868-1891.	3.8	47

MASAKAZU YOSHIMORI

#	Article	IF	CITATIONS
19	Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Climate Dynamics, 2010, 34, 101-121.	3.8	45
20	Rapid Adjustments of Cloud and Hydrological Cycle to Increasing CO2: a Review. Current Climate Change Reports, 2015, 1, 103-113.	8.6	44
21	The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium. Climate Dynamics, 2017, 49, 3457-3472.	3.8	43
22	Surface Arctic Amplification Factors in CMIP5 Models: Land and Oceanic Surfaces and Seasonality. Journal of Climate, 2016, 29, 3297-3316.	3.2	42
23	On the link between Hadley circulation changes and radiative feedback processes. Geophysical Research Letters, 2009, 36, .	4.0	39
24	On the causes of glacial inception at 116 kaBP. Climate Dynamics, 2002, 18, 383-402.	3.8	37
25	Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change. Climate Dynamics, 2018, 50, 2881-2903.	3.8	36
26	Simulated resumption of the North Atlantic meridional overturning circulation – Slow basin-wide advection and abrupt local convection. Quaternary Science Reviews, 2010, 29, 101-112.	3.0	34
27	Using a Multiphysics Ensemble for Exploring Diversity in Cloud–Shortwave Feedback in GCMs. Journal of Climate, 2012, 25, 5416-5431.	3.2	33
28	Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM. Climate Dynamics, 2014, 42, 1613-1630.	3.8	33
29	Glacial termination: sensitivity to orbital and CO 2 forcing in a coupled climate system model. Climate Dynamics, 2001, 17, 571-588.	3.8	28
30	Challenges posed by and approaches to the study of seasonal-to-decadal climate variability. Climatic Change, 2006, 79, 31-63.	3.6	28
31	Sources of Spread in Multimodel Projections of the Greenland Ice Sheet Surface Mass Balance. Journal of Climate, 2012, 25, 1157-1175.	3.2	27
32	Temperature scaling pattern dependence on representative concentration pathway emission scenarios. Climatic Change, 2012, 112, 535-546.	3.6	26
33	Fast and slow timescales in the tropical low-cloud response to increasing CO2 in two climate models. Climate Dynamics, 2012, 39, 1627-1641.	3.8	25
34	A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation. Progress in Earth and Planetary Science, 2016, 3, .	3.0	24
35	Visualizing the Interconnections Among Climate Risks. Earth's Future, 2019, 7, 85-100.	6.3	24
36	Reliability and importance of structural diversity of climate model ensembles. Climate Dynamics, 2013, 41, 2745-2763.	3.8	23

#	Article	IF	CITATIONS
37	Robust Seasonality of Arctic Warming Processes in Two Different Versions of the MIROC GCM. Journal of Climate, 2014, 27, 6358-6375.	3.2	23
38	Intensification of tropical Pacific biological productivity due to volcanic eruptions. Geophysical Research Letters, 2016, 43, 1184-1192.	4.0	21
39	Stability of weather regimes during the last millennium from climate simulations. Geophysical Research Letters, 2012, 39, .	4.0	17
40	The relevance of mid-Holocene Arctic warming to the future. Climate of the Past, 2019, 15, 1375-1394.	3.4	11
41	Fixed Anvil Temperature Feedback: Positive, Zero, or Negative?. Journal of Climate, 2020, 33, 2719-2739.	3.2	11
42	On the interpretation of low-latitude hydrological proxy records based on Maunder Minimum AOGCM simulations. Climate Dynamics, 2006, 27, 493-513.	3.8	10
43	Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5. Geoscientific Model Development, 2017, 10, 4647-4664.	3.6	10
44	PMIP4/CMIP6 last interglacial simulations using three different versions of MIROC: importance of vegetation. Climate of the Past, 2021, 17, 21-36.	3.4	10
45	Dependence of Precipitation Scaling Patterns on Emission Scenarios for Representative Concentration Pathways. Journal of Climate, 2013, 26, 8868-8879.	3.2	9
46	Validation of a Pattern Scaling Approach for Determining the Maximum Available Renewable Freshwater Resource. Journal of Hydrometeorology, 2014, 15, 505-516.	1.9	8
47	The Importance of Ocean Dynamical Feedback for Understanding the Impact of Mid–High-Latitude Warming on Tropical Precipitation Change. Journal of Climate, 2018, 31, 2417-2434.	3.2	8
48	Constraints to the tropical low loud trends in historical climate simulations. Atmospheric Science Letters, 2011, 12, 288-293.	1.9	7
49	The cloud radiative effect on the atmospheric energy budget and global mean precipitation. Climate Dynamics, 2015, 44, 2301-2325.	3.8	7
50	An energy budget framework to understand mechanisms of land–ocean warming contrast induced by increasing greenhouse gases Part I: Near-equilibrium state. Journal of Climate, 2021, , 1-63.	3.2	2