Vincenzo Cardinale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7292809/publications.pdf

Version: 2024-02-01

149

all docs

112 7,017 38
papers citations h-index

149

docs citations

h-index g-index

149 7733
times ranked citing authors

60583

81

#	Article	IF	CITATIONS
1	Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy, 2022, , .	0.3	3
2	Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology, 2022, 76, 1617-1633.	3.6	15
3	Islet Regeneration and Pancreatic Duct Glands in Human and Experimental Diabetes. Frontiers in Cell and Developmental Biology, 2022, 10, 814165.	1.8	4
4	Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. Journal of Hepatology, 2022, 76, 1109-1121.	1.8	119
5	Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Delivery and Translational Research, 2022, , 1.	3.0	O
6	Liver Metastases of Intrahepatic Cholangiocarcinoma: Implications for an Updated Staging System. Hepatology, 2021, 73, 2311-2325.	3.6	40
7	Vav1 Sustains the In Vitro Differentiation of Normal and Tumor Precursors to Insulin Producing Cells Induced by all-Trans Retinoic Acid (ATRA). Stem Cell Reviews and Reports, 2021, 17, 673-684.	1.7	2
8	Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Scientific Reports, $2021,11,2557.$	1.6	16
9	ABCB4-alteration screening in adult-onset cholestasis. Digestive and Liver Disease, 2021, 53, 261-262.	0.4	O
10	Accuracy of Transient Elastography in Assessing Fibrosis at Diagnosis in NaÃ⁻ve Patients With Primary Biliary Cholangitis: A Dual Cutâ€Off Approach. Hepatology, 2021, 74, 1496-1508.	3.6	28
11	Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies. Current Transplantation Reports, 2021, 8, 76-89.	0.9	1
12	Molecular Landscape and Therapeutic Strategies in Cholangiocarcinoma: An Integrated Translational Approach towards Precision Medicine. International Journal of Molecular Sciences, 2021, 22, 5613.	1.8	9
13	Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials, 2021, 277, 121067.	5.7	15
14	Emerging Therapies for Advanced Cholangiocarcinoma: An Updated Literature Review. Journal of Clinical Medicine, 2021, 10, 4901.	1.0	7
15	Small and Large Bile Ducts Intrahepatic Cholangiocarcinoma Classification: A Preliminary Feature-Based Study. Lecture Notes in Computer Science, 2021, , 237-244.	1.0	O
16	Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology, 2020, 71, 972-989.	3.6	40
17	Modulation of Biliary Cancer Chemoâ€Resistance Through MicroRNAâ€Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology, 2020, 72, 982-996.	3.6	30
18	Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology, 2020, 72, 470-485.	3.6	203

#	Article	IF	CITATIONS
19	Pancreas progenitors., 2020,, 347-357.		O
20	Italian Clinical Practice Guidelines on Cholangiocarcinoma – Part I: Classification, diagnosis and staging. Digestive and Liver Disease, 2020, 52, 1282-1293.	0.4	40
21	Intestinal permeability changes with bacterial translocation as key events modulating systemic host immune response to SARS-CoV-2: A working hypothesis. Digestive and Liver Disease, 2020, 52, 1383-1389.	0.4	69
22	Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Frontiers in Medicine, 2020, 7, 479.	1.2	11
23	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	8.2	1,155
24	Italian Clinical Practice Guidelines on Cholangiocarcinoma – Part II: Treatment. Digestive and Liver Disease, 2020, 52, 1430-1442.	0.4	35
25	Neoplastic Transformation of the Peribiliary Stem Cell Niche in Cholangiocarcinoma Arisen in Primary Sclerosing Cholangitis. Hepatology, 2019, 69, 622-638.	3.6	45
26	Functions and the Emerging Role of the Foetal Liver into Regenerative Medicine. Cells, 2019, 8, 914.	1.8	25
27	Hyaluronan-Based Grafting Strategies for Liver Stem Cell Therapy and Tracking Methods. Stem Cells International, 2019, 2019, 1-12.	1.2	9
28	SAT-485-European cliolangiocarcinoma (EU-CCA) registry: An initiative to broaden awareness on the second most common primary liver cancer. Journal of Hepatology, 2019, 70, e846-e847.	1.8	1
29	Classifications and misclassification in cholangiocarcinoma. Liver International, 2019, 39, 260-262.	1.9	24
30	The FXR agonist obeticholic acid inhibits the cancerogenic potential of human cholangiocarcinoma. PLoS ONE, 2019, 14, e0210077.	1.1	29
31	Cholangiocarcinoma: Stateâ€ofâ€theâ€art knowledge and challenges. Liver International, 2019, 39, 5-6.	1.9	6
32	PS-123-Biliary tree stem/progenitor cells mediate the regeneration in biliary lining after injury. Journal of Hepatology, 2019, 70, e76-e77.	1.8	0
33	Human duodenal submucosal glands contain stem cells with potential for liver and pancreatic regenerative medicine. Digestive and Liver Disease, 2019, 51, e3.	0.4	0
34	FRI-011-Ductular reaction, intermediate hepatocites and fibrosis extension correlate with prediction of treatment failure to ursodeoxycholic acid in primary biliary cholangitis. Journal of Hepatology, 2019, 70, e387-e388.	1.8	0
35	Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver International, 2019, 39, 79-97.	1.9	25
36	OC.01.1 BILIARY TREE STEM CELLS PLAY A KEY ROLE IN THE REGENERATION OF BILIARY EPITHELIUM AFTER INJURY. Digestive and Liver Disease, 2019, 51, e77.	0.4	0

#	Article	IF	CITATIONS
37	Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Scientific Reports, 2019, 9, 5559.	1.6	30
38	Ductular reaction, intermediate hepatocytes and fibrosis extension correlate with prediction of treatment failure to ursodeoxycholic acid in primary biliary cholangitis. Digestive and Liver Disease, 2019, 51, e1.	0.4	0
39	Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clinical Proteomics, 2019, 16, 37.	1.1	31
40	Cholest-4,6-Dien-3-One Promote Epithelial-To-Mesenchymal Transition (EMT) in Biliary Tree Stem/Progenitor Cell Cultures In Vitro. Cells, 2019, 8, 1443.	1.8	6
41	Coronary flow reserve is an innovative tool for the early detection of cardiovascular dysfunction in primary biliary cholangitis patients. Digestive and Liver Disease, 2019, 51, 549-550.	0.4	0
42	Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas. World Journal of Gastroenterology, 2019, 25, 4343-4359.	1.4	20
43	Specific human cholangiocarcinoma (CCA) subpopulations of cancer stem cells (CSCs) express DoubleCortin-Like Kinase 1 (DCLK1) and DCLK1 inhibition induces anti-cancer effects. Digestive and Liver Disease, 2018, 50, 5-6.	0.4	O
44	The exposure of primary cultures of human biliary tree stem/progenitor cells (hBTSCs) to different micro-environmental factors induces proliferation, epithelial-mesenchymal transition (EMT) and senescence, which are typical pathological features of human cholangiopathies. Digestive and Liver Disease, 2018, 50, 30.	0.4	0
45	Hepatic Stem/Progenitor Cell Activation Differs between Primary Sclerosing and Primary Biliary Cholangitis. American Journal of Pathology, 2018, 188, 627-639.	1.9	59
46	The cancerogenic potential of primary human Cholangioracinoma cells is inhibited by Obeticholic Acid, a Farnesoid X Receptor (FXR) agonist. Digestive and Liver Disease, 2018, 50, 22-23.	0.4	0
47	Pre-treatment risk stratification in primary biliary cholangitis: A predictive model to guide first-line combination therapy. Digestive and Liver Disease, 2018, 50, 21-22.	0.4	2
48	Cholangiocytes: Cell transplantation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1516-1523.	1.8	7
49	The burden of minimal hepatic encephalopathy: from diagnosis to therapeutic strategies. Annals of Gastroenterology, 2018, 31, 151-164.	0.4	46
50	Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases. International Journal of Molecular Sciences, 2018, 19, 2917.	1.8	38
51	Periostin and mesothelin: Potential predictors of malignant progression in intrahepatic cholangiocarcinoma. Hepatology Communications, 2018, 2, 481-483.	2.0	2
52	Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: development and validation of the UDCA Response Score. The Lancet Gastroenterology and Hepatology, 2018, 3, 626-634.	3.7	103
53	Peribiliary glands and biliary tree stem cells are involved in the pathogenesis of cholangiocarcinoma arising in patients affected by primary sclerosing cholangitis. Journal of Hepatology, 2018, 68, S674.	1.8	0
54	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	2.9	416

#	Article	IF	CITATIONS
55	Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human cholangiocarcinoma cells. Scientific Reports, 2017, 7, 14419.	1.6	27
56	P.10.2: Hyaluronic Acid Improves the Engraftment Efficiency of Human Biliary Tree Stem/Progenitor Cells (HBTSCS). Digestive and Liver Disease, 2017, 49, e195-e196.	0.4	0
57	Cryopreservation protocol for human biliary tree stem/progenitors, hepatic and pancreatic precursors. Scientific Reports, 2017, 7, 6080.	1.6	22
58	Hyaluronan coating improves liver engraftment of transplanted human biliary tree stem/progenitor cells. Stem Cell Research and Therapy, 2017, 8, 68.	2.4	32
59	Human biliary tree stem/progenitor cells immunomodulation: Role of hepatocyte growth factor. Hepatology Research, 2017, 47, 465-479.	1.8	4
60	Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. Journal of Hepatology, 2017, 66, 102-115.	1.8	130
61	Multilevel heterogeneity of biliary tract cancers may affect the modelling of prognosis. Liver International, 2017, 37, 1773-1775.	1.9	2
62	New insights into cholangiocarcinoma: multiple stems and related cell lineages of origin. Annals of Gastroenterology, 2017, 31, 42-55.	0.4	60
63	Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells International, 2016, 2016, 1-12.	1.2	60
64	Peribiliary Glands as a Niche of Extrapancreatic Precursors Yielding Insulin-Producing Cells in Experimental and Human Diabetes. Stem Cells, 2016, 34, 1332-1342.	1.4	22
65	The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration. Hepatology, 2016, 64, 277-286.	3.6	123
66	Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. Journal of Anatomy, 2016, 228, 474-486.	0.9	42
67	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	8.2	964
68	Magnetic Resonance Imaging and H-proton Spectroscopy assessment of maternal and foetal brains in a case of pregnancy-associated Wernicke encephalopathy. Journal of Obstetrics and Gynaecology, 2016, 36, 996-998.	0.4	4
69	SISMIKO: emergency network deployment and data sharing for the 2016 central Italy seismic sequence. Annals of Geophysics, 2016, 59, .	0.5	19
70	GPS observations of coseismicÂdeformation following the 2016, August 24, Mw 6 Amatrice earthquake (centralÂltaly): data, analysis and preliminary fault model. Annals of Geophysics, 2016, 59, .	0.5	14
71	Coseismic displacement waveforms for the 2016 August 24 Mw 6.0 Amatrice earthquake (central Italy) carried out from High-Rate GPS data. Annals of Geophysics, 2016, 59, .	0.5	16
72	Adult Human Biliary Tree Stem Cells Differentiate to \hat{l}^2 -Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide. PLoS ONE, 2015, 10, e0134677.	1.1	13

#	Article	IF	CITATIONS
73	Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE, 2015, 10, e0142124.	1.1	27
74	Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. Journal of Hepatology, 2015, 63, 1220-1228.	1.8	98
75	Profiles of Cancer Stem Cell Subpopulations in Cholangiocarcinomas. American Journal of Pathology, 2015, 185, 1724-1739.	1.9	87
76	Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nature Communications, 2015, 6, 8070.	5 . 8	86
77	Cholangiocarcinomas: New Insights from the Discovery of Stem Cell Niches in Peribiliary Glands of the Biliary Tree. Advances in Hepatology, 2014, 2014, 1-10.	1.3	5
78	Transplantation of human fetal biliary tree stem/progenitor cells into two patients with advanced liver cirrhosis. BMC Gastroenterology, 2014, 14, 204.	0.8	49
79	PTPN3 Mutations and HBV May Exert Synergistic Effects in the Origin of the Intrahepatic Cholangiocarcinoma. Gastroenterology, 2014, 147, 719-720.	0.6	5
80	The Fas/Fas ligand apoptosis pathway underlies immunomodulatory properties of human biliary tree stem/progenitor cells. Journal of Hepatology, 2014, 61, 1097-1105.	1.8	37
81	Tumorigenic potential of cancer stem cells (CSCs) isolated from human cholangiocarcinoma (CCA) subtypes in cirrhotic liver. Digestive and Liver Disease, 2014, 46, e133.	0.4	0
82	Evidence for multipotent endodermal stem/progenitor cell populations in human gallbladder. Journal of Hepatology, 2014, 60, 1194-1202.	1.8	62
83	Tumorigenic potential of cancer stem cells (CSCs) isolated from human cholangiocarcinoma (CCA) subtypes. Digestive and Liver Disease, 2014, 46, e57.	0.4	0
84	Molecular Profiling. Medical Radiology, 2014, , 99-115.	0.0	0
85	Concise review: Clinical programs of stem cell therapies for liver and pancreas. Stem Cells, 2013, 31, 2047-2060.	1.4	80
86	Notch2 signaling and undifferentiated liver cancers: Evidence of hepatic stem/progenitor cell origin. Hepatology, 2013, 58, 1188-1188.	3 . 6	10
87	Biliary tree stem cells, precursors to pancreatic committed progenitors: Evidence for possible life-long pancreatic organogenesis. Stem Cells, 2013, 31, 1966-1979.	1.4	99
88	Stem Cell Populations Giving Rise to Liver, Biliary Tree, and Pancreas., 2013,, 283-310.		2
89	Cholangiocarcinoma: increasing burden of classifications. Hepatobiliary Surgery and Nutrition, 2013, 2, 272-80.	0.7	39
90	The fetal liver as cell source for the regenerative medicine of liver and pancreas. Annals of Translational Medicine, 2013, 1, 13.	0.7	11

#	Article	IF	Citations
91	An isolate alpha-fetoprotein producing gastric cancer liver metastasis emerged in a patient previously affected by radiation induced liver disease. World Journal of Hepatology, 2013, 5, 398.	0.8	0
92	Metabolic oxidation controls the hepatic stem cells (HpSCs) fate and the hepatic lineage organization in physiologic and pathologic conditions. Hepatology, 2012, 56, 2006-2007.	3.6	3
93	Multipotent stem/progenitor cells in the human foetal biliary tree. Journal of Hepatology, 2012, 57, 987-994.	1.8	48
94	Cholangiocarcinoma: A cancer in search of the right classification. Hepatology, 2012, 56, 1585-1586.	3.6	10
95	The biliary treeâ€"a reservoir of multipotent stem cells. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 231-240.	8.2	187
96	Environmental Contribution to Pathogenesis of Cyst Formation in Autosomal-Dominant Polycystic Liver Diseases. Gastroenterology, 2012, 142, e26-e27.	0.6	2
97	Mucin-producing cholangiocarcinoma might derive from biliary tree stem/progenitor cells located in peribiliary glands. Hepatology, 2012, 55, 2041-2042.	3.6	60
98	Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical <i>in situ</i> study yielding evidence of maturational lineages. Journal of Anatomy, 2012, 220, 186-199.	0.9	194
99	Multiple cells of origin in cholangiocarcinoma underlie biological, epidemiological and clinical heterogeneity. World Journal of Gastrointestinal Oncology, 2012, 4, 94.	0.8	95
100	In Situ, In Vitro and In Vivo Demonstration of Multipotent Stem Cells (MPS) in Human Adult Extrahepatic Bile Ducts (hEHBDs). Gastroenterology, 2011, 140, S-889.	0.6	0
101	Successful Isolation, Culturing and Differentiation In Vitro and In Vivo of Multipotent Stem Cells (Mps) From Human Fetal Biliary Tree. Gastroenterology, 2011, 140, S-889.	0.6	0
102	Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology, 2011, 53, 293-305.	3.6	199
103	Human hepatic stem cell and maturational liver lineage biology. Hepatology, 2011, 53, 1035-1045.	3.6	264
104	Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology, 2011, 54, 2159-2172.	3.6	283
105	Primary Low-grade and High-grade Gastric MALT-lymphoma Presentation. Journal of Clinical Gastroenterology, 2010, 44, 340-344.	1.1	54
106	Intra-hepatic and extra-hepatic cholangiocarcinoma: New insight into epidemiology and risk factors. World Journal of Gastrointestinal Oncology, 2010, 2, 407.	0.8	169
107	Ascofuranone: A Possible Therapeutic Tool for Autosomal Dominant Polycystic Kidney Disease? – Letter. Molecular Cancer Therapeutics, 2010, 9, 3100-3100.	1.9	0
108	Polycystins play a key role in the modulation of cholangiocyte proliferation. Digestive and Liver Disease, 2010, 42, 377-385.	0.4	14

#	Article	IF	CITATIONS
109	Multipotent stem cells in the biliary tree. Italian Journal of Anatomy and Embryology, 2010, 115, 85-90.	0.1	18
110	New insights into liver stem cells. Digestive and Liver Disease, 2009, 41, 455-462.	0.4	94
111	Morphological and Functional Features of Hepatic Cyst Epithelium in Autosomal Dominant Polycystic Kidney Disease. American Journal of Pathology, 2008, 172, 321-332.	1.9	79
112	The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis. Journal of Hepatology, 2005, 43, 875-883.	1.8	72