Russell S Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7292445/publications.pdf

Version: 2024-02-01

221 papers

7,881 citations

43973 48 h-index 79 g-index

222 all docs 222 docs citations

times ranked

222

7011 citing authors

#	Article	IF	CITATIONS
1	Ultrasound Assessment of Flow-Mediated Dilation. Hypertension, 2010, 55, 1075-1085.	1.3	525
2	Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O ₂ availability. Journal of Applied Physiology, 1999, 86, 2013-2018.	1,2	260
3	Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a ³¹ P-MRS study. Journal of Applied Physiology, 1999, 86, 1367-1373.	1.2	228
4	Limited Maximal Exercise Capacity in Patients With Chronic Heart Failure. Journal of the American College of Cardiology, 2010, 55, 1945-1954.	1.2	174
5	Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. Journal of Physiology, 2006, 571, 415-424.	1.3	169
6	Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. Journal of Applied Physiology, 2013, 115, 355-364.	1.2	159
7	Reduced Mechanical Efficiency in Chronic Obstructive Pulmonary Disease but Normal Peak Vi‡o2with Small Muscle Mass Exercise. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 89-96.	2.5	154
8	Isolated Quadriceps Training Increases Maximal Exercise Capacity in Chronic Heart Failure. Journal of the American College of Cardiology, 2011, 58, 1353-1362.	1.2	144
9	Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. Journal of Physiology, 2001, 530, 331-341.	1.3	143
10	Differential effects of aging on limb blood flow in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H272-H278.	1.5	140
11	Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R441-R447.	0.9	134
12	On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. Journal of Physiology, 2011, 589, 3855-3866.	1.3	134
13	Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. Journal of Physiology, 2016, 594, 5303-5315.	1.3	127
14	Phosphocreatine hydrolysis during submaximal exercise: the effect of FIO 2. Journal of Applied Physiology, 1998, 85, 1457-1463.	1.2	124
15	Determinants of Oxygen Uptake. Sports Medicine, 1997, 24, 308-320.	3.1	120
16	Regulation of free radical outflow from an isolated muscle bed in exercising humans. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1689-H1699.	1.5	119
17	Acute Reversal of Endothelial Dysfunction in the Elderly After Antioxidant Consumption. Hypertension, 2012, 59, 818-824.	1.3	110
18	Evidence of Glycolysis Up-Regulation andÂPyruvate Mitochondrial Oxidation Mismatch During Mechanical Unloading ofÂthe Failing Human Heart. JACC Basic To Translational Science, 2016, 1, 432-444.	1.9	105

#	Article	IF	Citations
19	Exercise-induced brachial artery vasodilation: role of free radicals. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1516-H1522.	1.5	98
20	Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H346-H352.	1.5	97
21	Spinal νâ€opioid receptorâ€sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. Journal of Physiology, 2014, 592, 5011-5024.	1.3	94
22	Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clinical Neurophysiology, 2017, 128, 44-55.	0.7	92
23	Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart, 2016, 102, 278-284.	1.2	90
24	Heterogeneous limb vascular responsiveness to shear stimuli during dynamic exercise in humans. Journal of Applied Physiology, 2005, 99, 81-86.	1.2	89
25	Nitric oxide and passive limb movement: a new approach to assess vascular function. Journal of Physiology, 2012, 590, 1413-1425.	1.3	86
26	Progressive handgrip exercise: evidence of nitric oxide-dependent vasodilation and blood flow regulation in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1101-H1107.	1.5	85
27	Further Peripheral Vascular Dysfunction inÂHeart Failure Patients With a Continuous-Flow Left Ventricular Assist Device. JACC: Heart Failure, 2015, 3, 703-711.	1.9	83
28	Oral antioxidants and cardiovascular health in the exercise-trained and untrained elderly: a radically different outcome. Clinical Science, 2009, 116, 433-441.	1.8	82
29	Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment. Journal of Applied Physiology, 2001, 91, 1845-1853.	1.2	80
30	Skeletal muscle oxidative metabolism in sedentary humans: 31P-MRS assessment of O2 supply and demand limitations. Journal of Applied Physiology, 2004, 97, 1077-1081.	1.2	77
31	Exercise-induced brachial artery vasodilation: effects of antioxidants and exercise training in elderly men. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H671-H678.	1.5	77
32	Group III/IV muscle afferents impair limb blood in patients with chronic heart failure. International Journal of Cardiology, 2014, 174, 368-375.	0.8	75
33	Vascular Dysfunction and Chronic Obstructive Pulmonary Disease. Hypertension, 2014, 63, 459-467.	1.3	70
34	Nrf2 deficiency promotes apoptosis and impairs PAX7/MyoD expression in aging skeletal muscle cells. Free Radical Biology and Medicine, 2014, 71, 402-414.	1.3	66
35	CORP: Ultrasound assessment of vascular function with the passive leg movement technique. Journal of Applied Physiology, 2017, 123, 1708-1720.	1.2	66
36	Fatigueâ€related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise. Journal of Physiology, 2018, 596, 4789-4801.	1.3	64

#	Article	IF	CITATIONS
37	Strong Relationship Between Vascular Function in the Coronary and Brachial Arteries. Hypertension, 2019, 74, 208-215.	1.3	63
38	Evidence of preserved endothelial function and vascular plasticity with age. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1271-H1277.	1.5	61
39	The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R934-R940.	0.9	61
40	Passive leg movement and nitric oxide-mediated vascular function: the impact of age. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H672-H679.	1.5	61
41	Aging affects vascular structure and function in a limb-specific manner. Journal of Applied Physiology, 2008, 105, 1661-1670.	1.2	60
42	Regulation of exercise blood flow: Role of free radicals. Free Radical Biology and Medicine, 2016, 98, 90-102.	1.3	57
43	Does Brachial Artery Flow–Mediated Vasodilation Provide a Bioassay for NO?. Hypertension, 2013, 62, 345-351.	1.3	56
44	Limb-specific differences in flow-mediated dilation: the role of shear rate. Journal of Applied Physiology, 2007, 103, 843-851.	1.2	55
45	Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction. Journal of Applied Physiology, 2017, 122, 354-360.	1.2	55
46	Attenuated exercise induced hyperaemia with age: mechanistic insight from passive limb movement. Journal of Physiology, 2010, 588, 4507-4517.	1.3	54
47	The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. Journal of Physiology, 2014, 592, 4083-4096.	1.3	54
48	Impaired skeletal muscle vasodilation during exercise in heart failure with preserved ejection fraction. International Journal of Cardiology, 2016, 211, 14-21.	0.8	52
49	Onset exercise hyperaemia in humans: partitioning the contributors. Journal of Physiology, 2005, 565, 1053-1060.	1.3	51
50	Endothelin-1-mediated vasoconstriction at rest and during dynamic exercise in healthy humans. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2550-H2556.	1.5	50
51	Limb movement-induced hyperemia has a central hemodynamic component: evidence from a neural blockade study. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1693-H1700.	1.5	48
52	Passive limb movement: evidence of mechanoreflex sex specificity. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H154-H161.	1.5	46
53	Maximal strength training and increased work efficiency: contribution from the trained muscle bed. Journal of Applied Physiology, 2012, 113, 1846-1851.	1.2	44
54	The validity of anthropometric leg muscle volume estimation across a wide spectrum: From able-bodied adults to individuals with a spinal cord injury. Journal of Applied Physiology, 2014, 116, 1142-1147.	1.2	44

#	Article	IF	CITATIONS
55	Exercise-training-induced changes in metabolic capacity with age: the role of central cardiovascular plasticity. Age, 2014, 36, 665-676.	3.0	44
56	The Mechanoreflex and Hemodynamic Response to Passive Leg Movement in Heart Failure. Medicine and Science in Sports and Exercise, 2016, 48, 368-376.	0.2	44
57	The role of nitric oxide in passive leg movementâ€induced vasodilatation with age: insight from alterations in femoral perfusion pressure. Journal of Physiology, 2015, 593, 3917-3928.	1.3	43
58	Impact of maximal strength training on work efficiency and muscle fiber type in the elderly: Implications for physical function and fall prevention. Experimental Gerontology, 2017, 91, 64-71.	1.2	42
59	Endothelin-AÂ-Mediated Vasoconstriction During Exercise With Advancing Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 554-565.	1.7	40
60	Central and peripheral contributors to skeletal muscle hyperemia: response to passive limb movement. Journal of Applied Physiology, 2010, 108, 76-84.	1.2	39
61	Fatigue diminishes motoneuronal excitability during cycling exercise. Journal of Neurophysiology, 2016, 116, 1743-1751.	0.9	39
62	Multiparametric NMR-Based Assessment of Skeletal Muscle Perfusion and Metabolism During Exercise in Elderly Persons: Preliminary Findings. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 968-974.	1.7	38
63	Evidence that a higher ATP cost of muscular contraction contributes to the lower mechanical efficiency associated with COPD: preliminary findings. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1142-R1147.	0.9	38
64	The effect of oral antioxidants on brachial artery flow-mediated dilation following 5 and 10Âmin of ischemia. European Journal of Applied Physiology, 2009, 107, 445-453.	1.2	36
65	Elevated arterial shear rate increases indexes of endothelial cell autophagy and nitric oxide synthase activation in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H106-H112.	1.5	36
66	Oxygen availability and PCr recovery rate in untrained human calf muscle: evidence of metabolic limitation in normoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2046-R2051.	0.9	35
67	Exercise training improves vascular mitochondrial function. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H821-H829.	1.5	35
68	<i>InÂvivo</i> evidence of an age-related increase in ATP cost of contraction in the plantar flexor muscles. Clinical Science, 2014, 126, 581-592.	1.8	34
69	Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Medicine and Science in Sports and Exercise, 2018, 50, 2409-2417.	0.2	34
70	Antioxidants and aging: NMR-based evidence of improved skeletal muscle perfusion and energetics. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1870-H1875.	1.5	33
71	Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1885-H1891.	1.5	33
72	Oxidative Stress and COPD. Medicine and Science in Sports and Exercise, 2013, 45, 1235-1243.	0.2	33

#	Article	IF	Citations
73	Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1512-H1520.	1.5	33
74	Heart failure and movement-induced hemodynamics: Partitioning the impact of central and peripheral dysfunction. International Journal of Cardiology, 2015, 178, 232-238.	0.8	33
75	Quadriceps exercise intolerance in patients with chronic obstructive pulmonary disease: the potential role of altered skeletal muscle mitochondrial respiration. Journal of Applied Physiology, 2015, 119, 882-888.	1.2	33
76	Single passive leg movement assessment of vascular function: contribution of nitric oxide. Journal of Applied Physiology, 2017, 123, 1468-1476.	1.2	33
77	Aging, Exercise, and Limb Vascular Heterogeneity in Humans. Medicine and Science in Sports and Exercise, 2006, 38, 1804-1810.	0.2	32
78	Vascular Function and the Role of Oxidative Stress in Heart Failure, Heart Transplant, and Beyond. Hypertension, 2012, 60, 659-668.	1.3	32
79	Taming the "sleeping giant†the role of endothelin-1 in the regulation of skeletal muscle blood flow and arterial blood pressure during exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H162-H169.	1.5	32
80	MRS Evidence of Adequate O2 Supply in Human Skeletal Muscle at the Onset of Exercise. Medicine and Science in Sports and Exercise, 2015, 47, 2299-2307.	0.2	32
81	Impact of age on the vasodilatory function of human skeletal muscle feed arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H217-H225.	1.5	32
82	Oxygen availability and skeletal muscle oxidative capacity in patients with peripheral artery disease: implications from in vivo and in vitro assessments. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H897-H909.	1.5	32
83	Skeletal Muscle Function in the Oldest-Old: The Role of Intrinsic and Extrinsic Factors. Exercise and Sport Sciences Reviews, 2018, 46, 188-194.	1.6	31
84	Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved. Journal of Applied Physiology, 2019, 127, 1257-1266.	1.2	31
85	Human skeletal muscle feed arteries studiedin vitro: the effect of temperature on $\hat{l}\pm 1$ -adrenergic responsiveness. Experimental Physiology, 2011, 96, 907-918.	0.9	30
86	Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1479-H1489.	1.5	30
87	Understanding exercise-induced hyperemia: central and peripheral hemodynamic responses to passive limb movement in heart transplant recipients. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1653-H1659.	1.5	29
88	Ascorbate infusion increases skeletal muscle fatigue resistance in patients with chronic obstructive pulmonary disease. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1163-R1170.	0.9	29
89	The Effect of Physical Activity on Passive Leg Movement–Induced Vasodilation with Age. Medicine and Science in Sports and Exercise, 2016, 48, 1548-1557.	0.2	29
90	Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity. Experimental Physiology, 2018, 103, 838-850.	0.9	29

#	Article	IF	CITATIONS
91	Heat and \hat{l}_{\pm} ₁ -adrenergic responsiveness in human skeletal muscle feed arteries: the role of nitric oxide. Journal of Applied Physiology, 2012, 113, 1690-1698.	1.2	28
92	Perfusion pressure and movement-induced hyperemia: evidence of limited vascular function and vasodilatory reserve with age. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H610-H619.	1.5	28
93	Peripheral vascular function, oxygen delivery and utilization: the impact of oxidative stress in aging and heart failure with reduced ejection fraction. Heart Failure Reviews, 2017, 22, 149-166.	1.7	28
94	Single passive leg movement-induced hyperemia: a simple vascular function assessment without a chronotropic response. Journal of Applied Physiology, 2017, 122, 28-37.	1.2	28
95	Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise. Journal of Physiology, 2018, 596, 1373-1384.	1.3	27
96	Sex-specific impact of aging on the blood pressure response to exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H95-H104.	1.5	27
97	Physiological Impact and Clinical Relevance of Passive Exercise/Movement. Sports Medicine, 2019, 49, 1365-1381.	3.1	27
98	Human muscle length-dependent changes in blood flow. Journal of Applied Physiology, 2012, 112, 560-565.	1.2	26
99	Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle. Journal of Physiology, 2018, 596, 5149-5161.	1.3	26
100	Determinants of the diminished exercise capacity in patients with chronic obstructive pulmonary disease: looking beyond the lungs. Journal of Physiology, 2020, 598, 599-610.	1.3	26
101	Reduced muscle oxidative capacity is independent of O2 availability in elderly people. Age, 2013, 35, 1183-1192.	3.0	25
102	Vascular function assessed by passive leg movement and flow-mediated dilation: initial evidence of construct validity. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1277-H1286.	1.5	25
103	Limitations to vasodilatory capacity and V̇o2 max in trained human skeletal muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2491-H2497.	1.5	24
104	Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H765-H774.	1.5	24
105	Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. Journal of Applied Physiology, 2018, 124, 1045-1053.	1.2	24
106	Induced Trf2 deletion leads to aging vascular phenotype in mice associated with arterial telomere uncapping, senescence signaling, and oxidative stress. Journal of Molecular and Cellular Cardiology, 2019, 127, 74-82.	0.9	24
107	Accuracy and precision of quantitative < sup > 31 < /sup > P-MRS measurements of human skeletal muscle mitochondrial function. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E358-E366.	1.8	23
108	Experimental reduction of miR-92a mimics arterial aging. Experimental Gerontology, 2016, 83, 165-170.	1.2	23

#	Article	IF	CITATIONS
109	Bioenergetics and ATP Synthesis during Exercise. Medicine and Science in Sports and Exercise, 2017, 49, 2404-2413.	0.2	23
110	The role of muscle mass in exercise-induced hyperemia. Journal of Applied Physiology, 2014, 116, 1204-1209.	1.2	22
111	Contribution of nitric oxide to brachial artery vasodilation during progressive handgrip exercise in the elderly. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R893-R899.	0.9	21
112	Mitochondrial function and increased convective O ₂ transport: implications for the assessment of mitochondrial respiration in vivo. Journal of Applied Physiology, 2013, 115, 803-811.	1.2	21
113	TRPV ₁ channels in human skeletal muscle feed arteries: implications for vascular function. Experimental Physiology, 2017, 102, 1245-1258.	0.9	21
114	Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H977-H985.	1.5	20
115	Influence of dietary inorganic nitrate on blood pressure and vascular function in hypertension: prospective implications for adjunctive treatment. Journal of Applied Physiology, 2019, 127, 1085-1094.	1.2	20
116	Nitric oxide-mediated vascular function in sepsis using passive leg movement as a novel assessment: a cross-sectional study. Journal of Applied Physiology, 2016, 120, 991-999.	1.2	19
117	Vasodilatory function in human skeletal muscle feed arteries with advancing age: the role of adropin. Journal of Physiology, 2019, 597, 1791-1804.	1.3	19
118	The effect of higher ATP cost of contraction on the metabolic response to graded exercise in patients with chronic obstructive pulmonary disease. Journal of Applied Physiology, 2012, 112, 1041-1048.	1.2	18
119	A differing role of oxidative stress in the regulation of central and peripheral hemodynamics during exercise in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1237-H1244.	1.5	18
120	Evidence of Preserved Oxidative Capacity and Oxygen Delivery in the Plantar Flexor Muscles With Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1067-1076.	1.7	18
121	Skeletal Muscle Fiber Size and Gene Expression in the Oldest-Old With Differing Degrees of Mobility. Frontiers in Physiology, 2019, 10, 313.	1.3	18
122	Imaging transcranial Doppler ultrasound to measure middle cerebral artery blood flow: the importance of measuring vessel diameter. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R33-R42.	0.9	18
123	Vascular mitochondrial respiratory function: the impact of advancing age. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1660-H1669.	1.5	17
124	Impaired Muscle Efficiency but Preserved Peripheral Hemodynamics and Mitochondrial Function With Advancing Age: Evidence From Exercise in the Young, Old, and Oldest-Old. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1303-1312.	1.7	16
125	Passive leg movement-induced vasodilation in women: the impact of age. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H995-H1002.	1.5	15
126	Mitochondrial function in heart failure: The impact of ischemic and non-ischemic etiology. International Journal of Cardiology, 2016, 220, 711-717.	0.8	15

#	Article	IF	CITATIONS
127	Exercise Pressor Reflex Contributes to the Cardiovascular Abnormalities Characterizing. Hypertension, 2019, 74, 1468-1475.	1.3	15
128	Skeletal muscle mitochondrial adaptations induced by long-term cigarette smoke exposure. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E80-E89.	1.8	15
129	Impact of age on the development of fatigue during large and small muscle mass exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R741-R750.	0.9	14
130	Impact of acute antioxidant administration on inflammation and vascular function in heart failure with preserved ejection fraction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R607-R614.	0.9	14
131	Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R378-R388.	0.9	13
132	Vasodilatory and vascular mitochondrial respiratory function with advancing age: evidence of a free radically mediated link in the human vasculature. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R701-R711.	0.9	13
133	Sacubitril-valsartan improves conduit vessel function and functional capacity and reduces inflammation in heart failure with reduced ejection fraction. Journal of Applied Physiology, 2021, 130, 256-268.	1.2	13
134	Age-related arterial telomere uncapping and senescence is greater in women compared with men. Experimental Gerontology, 2016, 73, 65-71.	1.2	12
135	Human Vascular Aging. Exercise and Sport Sciences Reviews, 2010, 38, 177-185.	1.6	11
136	Exercise-induced brachial artery blood flow and vascular function is impaired in systemic sclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1375-H1381.	1.5	11
137	Less peripheral fatigue after prior exercise is not evidence against the regulation of the critical peripheral fatigue threshold. Journal of Applied Physiology, 2015, 119, 1520-1520.	1.2	10
138	Skeletal Muscle Mitochondrial Adaptations to Maximal Strength Training in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 2269-2277.	1.7	10
139	Activating P2Y1 receptors improves function in arteries with repressed autophagy. Cardiovascular Research, 2023, 119, 252-267.	1.8	10
140	Oxygen delivery and the restoration of the muscle energetic balance following exercise: implications for delayed muscle recovery in patients with COPD. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E94-E104.	1.8	9
141	The muscle reflex and chemoreflex interaction: ventilatory implications for the exercising human. Journal of Applied Physiology, 2020, 129, 691-700.	1.2	9
142	The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H668-H678.	1.5	9
143	Evidence of a metabolic reserve in the skeletal muscle of elderly people. Aging, 2016, 9, 52-67.	1.4	9
144	Delineating the age-related attenuation of vascular function: Evidence supporting the efficacy of the single passive leg movement as a screening tool. Journal of Applied Physiology, 2019, 126, 1525-1532.	1.2	8

#	Article	IF	Citations
145	Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD. Journal of Applied Physiology, 2021, 130, 69-79.	1.2	8
146	On the implication of dietary nitrate supplementation for the hemodynamic and fatigue response to cycling exercise. Journal of Applied Physiology, 2021, 131, 1691-1700.	1.2	8
147	Sympathoinhibitory effect of sacubitril-valsartan in heart failure with reduced ejection fraction: A pilot study. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102834.	1.4	7
148	Exercise Capacity in Mechanically Supported Advanced Heart Failure Patients: It Is All About the Beat. ASAIO Journal, 2020, 66, 339-342.	0.9	6
149	Direct Assessment of Muscle Sympathetic Nerve Activity During Exercise in Heart Failure With Preserved Ejection Fraction: A Case Report. Journal of Cardiac Failure, 2021, 27, 114-116.	0.7	6
150	Exercise training in COPD: muscle O ₂ transport plasticity. European Respiratory Journal, 2021, 58, 2004146.	3.1	6
151	Acute oral tetrahydrobiopterin administration ameliorates endothelial dysfunction in systemic sclerosis. Clinical and Experimental Rheumatology, 2017, 35 Suppl 106, 167-172.	0.4	6
152	Age-Associated ALU Element Instability in White Blood Cells Is Linked to Lower Survival in Elderly Adults: A Preliminary Cohort Study. PLoS ONE, 2017, 12, e0169628.	1.1	5
153	The passive leg movement technique for assessing vascular function: defining the distribution of blood flow and the impact of occluding the lower leg. Experimental Physiology, 2019, 104, 1575-1584.	0.9	5
154	Passive leg movement in chronic obstructive pulmonary disease: evidence of locomotor muscle vascular dysfunction. Journal of Applied Physiology, 2020, 128, 1402-1411.	1.2	5
155	Spinal cord injury and vascular function: evidence from diameter-matched vessels. Journal of Applied Physiology, 2021, 130, 562-570.	1.2	5
156	Locomotor Muscle Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction. Hypertension, 2021, 78, 1750-1759.	1.3	5
157	Attenuated nitric oxide bioavailability in systemic sclerosis: Evidence from the novel assessment of passive leg movement. Experimental Physiology, 2018, 103, 1412-1424.	0.9	4
158	The "double whammy―of a continuous-flow left ventricular assist device on von Willebrand factor. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 910-915.	0.4	4
159	Chronic antioxidant administration restores macrovascular function in patients with heart failure with reduced ejection fraction. Experimental Physiology, 2020, 105, 1384-1395.	0.9	4
160	The dynamic adjustment of mean arterial pressure during exercise: a potential tool for discerning cardiovascular health status. Journal of Applied Physiology, 2021, 130, 1544-1554.	1.2	4
161	The passive leg movement technique for assessing vascular function: the impact of baseline blood flow. Experimental Physiology, 2021, 106, 2133-2147.	0.9	4
162	The role of endothelin A receptors in peripheral vascular control at rest and during exercise in patients with hypertension. Journal of Physiology, 2020, 598, 71-84.	1.3	3

#	Article	IF	Citations
163	Nitric oxide synthase inhibition with N(G)-monomethyl-l-arginine: Determining the window of effect in the human vasculature. Nitric Oxide - Biology and Chemistry, 2020, 104-105, 51-60.	1.2	3
164	Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R687-R698.	0.9	3
165	Vascular Dysfunction in Chronic Obstructive Pulmonary Disease (COPD): The Role of Mitochondrialâ€derived Oxidative Stress. FASEB Journal, 2019, 33, 527.10.	0.2	3
166	Passive leg movement-induced vasodilation and exercise-induced sympathetic vasoconstriction. Autonomic Neuroscience: Basic and Clinical, 2022, 239, 102969.	1.4	3
167	Age-related changes in skeletal muscle function: the sum of the parts could be greater than the whole. Journal of Applied Physiology, 2016, 121, 1234-1234.	1.2	2
168	Vascular function in continuous-flow left ventricular assist device recipients: effect of a single pulsatility treatment session. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R425-R437.	0.9	2
169	Telomere uncapping causes cellular senescence and inflammation in arteries: implications for arterial aging. FASEB Journal, 2013, 27, 1131.1.	0.2	2
170	No effect of acute tetrahydrobiopterin (BH ₄) supplementation on vascular dysfunction in the old. Journal of Applied Physiology, 2022, 132, 773-784.	1.2	2
171	Reliability of the passive leg movement assessment of vascular function in men. Experimental Physiology, 2022, 107, 541-552.	0.9	2
172	Dietary Nitrate Supplementation and Small Muscle Mass Exercise Hemodynamics in Patients with Essential Hypertension. Journal of Applied Physiology, 0 , , .	1.2	2
173	The female menstrual cycle: impact on cardiovascular, ventilatory and neuromuscular responses to whole body exercise. FASEB Journal, 2020, 34, 1-1.	0.2	1
174	The Influence of an Antioxidant Cocktail on Vascular Function in COPD. FASEB Journal, 2008, 22, 1235.16.	0.2	1
175	Evidence of impaired vasodilation during exercise in heart failure with preserved ejection fraction (1156.3). FASEB Journal, 2014, 28, 1156.3.	0.2	1
176	Persistent vascular dysfunction following an acute nonpharmacological reduction in blood pressure in hypertensive patients. Journal of Hypertension, 2022, 40, 1115-1125.	0.3	1
177	The skeletal muscle microcirculation: if this is the hippodrome for the chariots of vasoactivity, who is the charioteer?. Experimental Physiology, 2014, 99, 78-79.	0.9	0
178	Response. Medicine and Science in Sports and Exercise, 2015, 47, 2481-2482.	0.2	0
179	Reply to Drouin and Tschakovsky. Journal of Applied Physiology, 2019, 126, 797-797.	1.2	0
180	Regulation of skeletal muscle blood flow in the elderly: role of alphaâ€₁ adrenergic receptor sensitivity. FASEB Journal, 2008, 22, 967.8.	0.2	0

#	Article	IF	CITATIONS
181	Oxidative Stress and Exerciseâ€Induced Flowâ€Mediated Dilation in COPD: Insight into Skeletal Muscle Dysfunction. FASEB Journal, 2008, 22, 1235.15.	0.2	0
182	Oxygen transport from air to cell: The impact of age. FASEB Journal, 2010, 24, 1026.16.	0.2	0
183	Acute Antioxidant Consumption Improves Vascular Function in the Elderly. FASEB Journal, 2010, 24, 1039.15.	0.2	O
184	A single dose of quercetin lowers blood pressure in hypertensive but not prehypertensive males. FASEB Journal, 2010, 24, 230.6.	0.2	0
185	Alpha Adrenergic Sensitivity and Temperature in Human Arteries: The Role of Nitric Oxide. FASEB Journal, 2010, 24, 804.15.	0.2	0
186	Flowâ€Mediated Vasodilation and Endothelinâ€1. FASEB Journal, 2010, 24, .	0.2	0
187	Evidence of the regulatory potential of human skeletal muscle feed arteries. FASEB Journal, 2012, 26, 1138.29.	0.2	0
188	Regulation of the pressor reflex response during progressive handgrip exercise in heart failure. FASEB Journal, 2012, 26, 1138.13.	0.2	0
189	Oxidative stress and chronic obstructive pulmonary disease: The impact of oral antioxidants on skeletal muscle fatigue. FASEB Journal, 2013, 27, 712.4.	0.2	O
190	The Effects of Continuousâ€flow Left Ventricular Assist Devices on Peripheral Vascular Function. FASEB Journal, 2013, 27, 1136.16.	0.2	0
191	Exerciseâ€induced PCr recovery kinetics and tissue oxygenation: The role of free radicals and aging. FASEB Journal, 2013, 27, 1202.17.	0.2	0
192	Group III/IV muscle afferents impair limb blood flow during exercise in patients with heart failure. FASEB Journal, 2013, 27, 699.4.	0.2	0
193	Nitric oxideâ€mediated vascular function in response to limb movement: the impact of age. FASEB Journal, 2013, 27, 1136.4.	0.2	0
194	Is Sympathetic Restraint of Skeletal Muscle Blood Flow Present During Exercise?. FASEB Journal, 2013, 27, 1136.2.	0.2	0
195	Limb Movementâ€Induced Central and Peripheral Hemodynamics in Heart Failure: The Role of Afferent Feedback. FASEB Journal, 2013, 27, 943.21.	0.2	0
196	Altered skeletal muscle respiration in patients with COPD: mitochondrial density or dysfunction?. FASEB Journal, 2013, 27, 1209.4.	0.2	0
197	Peripheral vascular function in heart failure patients with preserved ejection fraction (1156.4). FASEB Journal, 2014, 28, 1156.4.	0.2	О
198	Altered mitochondrial function in epididymal adipose tissue with advancing age (960.6). FASEB Journal, 2014, 28, 960.6.	0.2	0

#	Article	IF	Citations
199	Sex Differences in the Sympathetic Restraint of Skeletal Muscle Blood Flow in the Human Leg Vasculature. FASEB Journal, 2018, 32, 594.4.	0.2	0
200	Mitochondrial respiratory function in the vasculature with advancing age: Examining the link to vasodilatory dysfunction FASEB Journal, 2018, 32, 578.2.	0.2	0
201	Cardiovascular Responses to Dynamic Handgrip Exercise in Patients with Heart Failure with Preserved Ejection Fraction. FASEB Journal, 2018, 32, 726.1.	0.2	0
202	Blood Pressure and Vascular Function in Hypertensive Individuals: Partitioning cause and effect. FASEB Journal, 2018, 32, 847.11.	0.2	0
203	Mechanisms of Ageâ€related Compensatory Vasodilation: Insight from Passive Leg Movement. FASEB Journal, 2018, 32, 726.7.	0.2	0
204	Delineating the ageâ€related attenuation of vascular function: evidence supporting the efficacy of single passive leg movement FASEB Journal, 2018, 32, 578.6.	0.2	0
205	Aging and Endothelial Dysfunction: The Role of NADPH Oxidase and the Insufficient Inhibition by PKG. FASEB Journal, 2018, 32, 703.6.	0.2	0
206	Influence of altered physical activity on vascular function in older adults: A divergent impact on the conduit and microvascular systems. FASEB Journal, 2018, 32, 713.1.	0.2	0
207	Decline in conduit artery function across the healthy human adult lifespan: influence of successful aging. FASEB Journal, 2018, 32, 578.5.	0.2	0
208	The Impact of Acute Tetrahydrobiopterin Administration on Plasma Adropin Concentration in Patients with Systemic Sclerosis. FASEB Journal, 2018, 32, 902.20.	0.2	0
209	Impact of Acute Dietary Nitrate Supplementation on Exercise Blood Flow in Hypertension: Does Medication Status Matter?. FASEB Journal, 2019, 33, 696.17.	0.2	0
210	The role of enzyme and substrate dependence in NOâ€mediated vascular dysfunction with aging. FASEB Journal, 2019, 33, 683.4.	0.2	0
211	Evidence for an Ageâ€Associated Impairment of Exerciseâ€Induced Autophagy and eNOS Activation in Primary Arterial Endothelial Cells from Humans. FASEB Journal, 2019, 33, 696.2.	0.2	0
212	Impact of Acute Antioxidant Administration on Inflammation and Vascular Function in Heart Failure with Preserved Ejection Fraction. FASEB Journal, 2019, 33, 829.9.	0.2	0
213	The Impact of Chronic Antioxidant Administration on Sympathetic Nervous System Activity and Vascular Function in Heart Failure Patients with a Reduced Ejection Fraction. FASEB Journal, 2019, 33, 564.4.	0.2	0
214	Vascular Function in Heart Failure Patients Implanted with a Continuousâ€Flow Left Ventricular Assist Device: Impact of Increasing Peripheral Vascular Pulsatility. FASEB Journal, 2019, 33, 532.16.	0.2	0
215	The Role of Endothelinâ€1 in Exercising Blood Flow and Blood Pressure Regulation in Patients with Hypertension. FASEB Journal, 2019, 33, 696.11.	0.2	0
216	Impact of Salt Restriction on Central and Peripheral Hemodynamics During Exercise in Essential Hypertension: A Systematic Investigation. FASEB Journal, 2019, 33, 835.10.	0.2	0

#	Article	IF	CITATIONS
217	Determinants of Peak Oxygen Uptake in Patients with Chronic Obstructive Pulmonary Disease: Looking Beyond the Lungs. FASEB Journal, 2019, 33, 696.9.	0.2	0
218	Preâ€fatiguing Isometric Quadriceps Exercise Impairs Contralateral Quadriceps W' During Allâ€out and Not Target Torque Time to Task Failure Exercise. FASEB Journal, 2022, 36, .	0.2	0
219	Impact of O2 Availability on Convective and Diffusive O2 Transport and Skeletal Muscle Intracellular PO2 at VO2max. FASEB Journal, 2022, 36, .	0.2	O
220	Targeting Endogenous Antioxidant Capacity to Prevent Vascular Dysfunction Induced by Limb Immobilization. FASEB Journal, 2022, 36, .	0.2	0
221	Shortâ€term Lâ€Citrulline supplementation and macro―and microâ€vascular function in old adults. FASEB Journal, 2022, 36, .	0.2	0