
Lise Korsten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7292039/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Characterization of Multidrug-Resistant Escherichia coli Isolated from Two Commercial Lettuce and Spinach Supply Chains. Journal of Food Protection, 2022, 85, 122-132.	1.7	7
2	The microbiome and resistome of apple fruits alter in the post-harvest period. Environmental Microbiomes, 2022, 17, 10.	5.0	11
3	Fungal microbiome shifts on avocado fruit associated with a combination of postharvest chemical and physical interventions. Journal of Applied Microbiology, 2022, 133, 1905-1918.	3.1	5
4	Bacterial community dynamics and functional profiling of soils from conventional and organic cropping systems. Applied Soil Ecology, 2021, 157, 103734.	4.3	20
5	Prevalence of <i>E. coli</i> O157:H7 strains in irrigation water and agricultural soil in two district municipalities in South Africa. International Journal of Environmental Studies, 2021, 78, 474-483.	1.6	8
6	Microbial Load and Prevalence of Escherichia coli and Salmonella spp. in Macadamia Nut Production Systems. Journal of Food Protection, 2021, 84, 1088-1096.	1.7	1
7	Antibiogram imprints of E. coli O157:H7 recovered from irrigation water and agricultural soil samples collected from two district municipalities in South Africa. International Journal of Environmental Studies, 2021, 78, 940-953.	1.6	4
8	Multidrug resistant Escherichia coli from fresh produce sold by street vendors in South African informal settlements. International Journal of Environmental Health Research, 2021, , 1-16.	2.7	4
9	Statement based on the 4ÂTH international conference on global food security – December 2020: Challenges for a disruptive research Agenda. Global Food Security, 2021, 30, 100554.	8.1	4
10	Whole Genome Sequencing of Extended-Spectrum- and AmpC- β-Lactamase-Positive Enterobacterales Isolated From Spinach Production in Gauteng Province, South Africa. Frontiers in Microbiology, 2021, 12, 734649.	3.5	6
11	Plant Health and Sound Vibration: Analyzing Implications of the Microbiome in Grape Wine Leaves. Pathogens, 2021, 10, 63.	2.8	13
12	High prevalence of multidrug resistant <i>Escherichia coli</i> isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. Journal of Food Science, 2021, 86, 161-168.	3.1	13
13	Mango Endophyte and Epiphyte Microbiome Composition during Fruit Development and Post-Harvest Stages. Horticulturae, 2021, 7, 495.	2.8	9
14	Antibiotic resistance profiles of Staphylococcus spp. from white button mushrooms and handlers. South African Journal of Science, 2021, 117, .	0.7	2
15	Microbiological safety of spinach throughout commercial supply chains in Gauteng Province, South Africa and characterization of isolated multidrugâ€resistant Escherichia coli. Journal of Applied Microbiology, 2021, , .	3.1	4
16	Mapping disruption and resilience mechanisms in food systems. Food Security, 2020, 12, 695-717.	5.3	111
17	The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. MicrobiologyOpen, 2020, 9, e1035.	3.0	108
18	Antibiogram Signatures of Some Enterobacteria Recovered from Irrigation Water and Agricultural Soil in two District Municipalities of South Africa. Microorganisms, 2020, 8, 1206.	3.6	8

#	Article	IF	CITATIONS
19	smAvo and smaTo: A fruity odyssey of smart sensor platforms in Southern Africa. HardwareX, 2020, 8, e00156.	2.2	4
20	Microbiome approaches provide the key to biologically control postharvest pathogens and storability of fruits and vegetables. FEMS Microbiology Ecology, 2020, 96, .	2.7	54
21	Occurrence, Phenotypic and Molecular Characterization of Extended-Spectrum- and AmpC- β-Lactamase Producing Enterobacteriaceae Isolated From Selected Commercial Spinach Supply Chains in South Africa. Frontiers in Microbiology, 2020, 11, 638.	3.5	24
22	Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 2020, 151, 103543.	4.3	32
23	Impact of Postharvest Storage on the Infection and Colonization of <i>Penicillium digitatum</i> and <i>Penicillium expansum</i> on Nectarine. Plant Disease, 2019, 103, 1584-1594.	1.4	4
24	Occurrence, fate and toxic effects of the industrial endocrine disrupter, nonylphenol, on plants - A review. Ecotoxicology and Environmental Safety, 2019, 181, 419-427.	6.0	47
25	Awakening from the listeriosis crisis: Food safety challenges, practices and governance in the food retail sector in South Africa. Food Control, 2019, 104, 333-342.	5.5	53
26	Diversity of Cladobotryum mycophilum isolates associated with cobweb disease of Agaricus bisporus in the south African mushroom industry. European Journal of Plant Pathology, 2019, 154, 767-776.	1.7	11
27	Exploring the microbial communities associated with Botrytis cinerea during berry development in table grape with emphasis on potential biocontrol yeasts. European Journal of Plant Pathology, 2019, 154, 919-930.	1.7	11
28	Occurrence, Identification, and Antimicrobial Resistance Profiles of Extended-Spectrum and AmpC β-Lactamase-Producing <i>Enterobacteriaceae</i> from Fresh Vegetables Retailed in Gauteng Province, South Africa. Foodborne Pathogens and Disease, 2019, 16, 421-427.	1.8	48
29	Impact of ripeness on the infection and colonisation of Penicillium digitatum and P. expansum on plum. Postharvest Biology and Technology, 2019, 149, 148-158.	6.0	8
30	Relative proportions of E. coli and Enterococcus spp. may be a good indicator of potential health risks associated with the use of roof harvested rainwater stored in tanks. Environmental Monitoring and Assessment, 2018, 190, 177.	2.7	10
31	Food sovereignty: shifting debates on democratic food governance. Food Security, 2018, 10, 223-233.	5.3	16
32	Irrigation water quality and microbial safety of leafy greens in different vegetable production systems: A review. Food Reviews International, 2018, 34, 308-328.	8.4	36
33	Prevalence of Botrytis cinerea at different phenological stages of table grapes grown in the northern region of South Africa. Scientia Horticulturae, 2018, 239, 57-63.	3.6	10
34	Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane. Journal of the Science of Food and Agriculture, 2017, 97, 1185-1192.	3.5	4
35	Effect of postharvest practices including degreening on citrus carpoplane microbial biomes. Journal of Applied Microbiology, 2017, 122, 1057-1070.	3.1	17
36	Viable microbial loads on citrus carpoplane during packhouse processing and survival of foodborne pathogens in reconstituted postharvest fungicides. Journal of Food Safety, 2017, 37, e12357.	2.3	5

#	Article	IF	CITATIONS
37	Penicillium air mycoflora in postharvest fruit handling environments associated with the pear export chain. Postharvest Biology and Technology, 2017, 128, 153-160.	6.0	1
38	Morphological characterisation of lettuce plasma membrane ultrastructure and vesicle formation caused by nonylphenol: A scanning electron microscopy study. South African Journal of Botany, 2017, 111, 176-181.	2.5	5
39	Assessment of foodborne pathogen presence in the peach supply chain and its potential risk to the end consumer. Food Control, 2017, 78, 374-382.	5.5	18
40	Cultivable microbiome of fresh white button mushrooms. Letters in Applied Microbiology, 2017, 64, 164-170.	2.2	33
41	Ultrastructural and developmental evidence of phytotoxicity on cos lettuce (Lactuca sativa) associated with nonylphenol exposure. Chemosphere, 2017, 169, 428-436.	8.2	16
42	Characterization of fungal communities of developmental stages in table grape grown in the northern region of South Africa. Journal of Applied Microbiology, 2017, 123, 1251-1262.	3.1	18
43	Effect of thyme oil vapours exposure on phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) genes expression, and control of anthracnose in â€~Hass' and â€~Ryan' avocado fruit. Scientia Horticulturae, 2017, 224, 232-237.	3.6	38
44	Bacterial biomes and potential human pathogens in irrigation water and leafy greens from different production systems described using pyrosequencing. Journal of Applied Microbiology, 2017, 123, 1043-1053.	3.1	11
45	Assessment of irrigation water quality and microbiological safety of leafy greens in different production systems. Journal of Food Safety, 2017, 37, e12324.	2.3	14
46	Exploratory Study into the Microbiological Quality of Spinach and Cabbage Purchased from Street Vendors and Retailers in Johannesburg, South Africa. Journal of Food Protection, 2017, 80, 1726-1733.	1.7	20
47	Pesticide residues and estrogenic activity in fruit and vegetables sampled from major fresh produce markets in South Africa. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1-10.	2.3	2
48	Monitoring Pesticide Residues in Fruits and Vegetables at Two of the Biggest Fresh Produce Markets in Africa. Journal of Food Protection, 2016, 79, 1938-1945.	1.7	26
49	Assessment of Primary Production of Horticultural Safety Management Systems of Mushroom Farms in South Africa. Journal of Food Protection, 2016, 79, 1188-1196.	1.7	4
50	Pesticide Residue Monitoring on South African Fresh Produce Exported over a 6-Year Period. Journal of Food Protection, 2016, 79, 1759-1766.	1.7	17
51	Effect of Temperature and Nutrient Concentration on Survival of Foodborne Pathogens in Deciduous Fruit Processing Environments for Effective Hygiene Management. Journal of Food Protection, 2016, 79, 1959-1964.	1.7	5
52	Genetic Diversity and Antibiotic Resistance of Escherichia coli Isolates from Different Leafy Green Production Systems. Journal of Food Protection, 2016, 79, 1846-1853.	1.7	22
53	Integrated Application of Chitosan Coating with Different Postharvest Treatments in the Control of Postharvest Decay and Maintenance of Overall FruitÂQuality. , 2016, , 127-153.		6
54	Genetic modification for disease resistance: a position paper. Food Security, 2016, 8, 865-870.	5.3	6

#	Article	IF	CITATIONS
55	Profile of <i>Penicillium</i> species in the pear supply chain. Plant Pathology, 2016, 65, 1126-1132.	2.4	18
56	Microbial quality and suitability of roof-harvested rainwater in rural villages for crop irrigation and domestic use. Journal of Water and Health, 2016, 14, 961-971.	2.6	18
57	Postharvest decay of nectarine and plum caused by Penicillium spp European Journal of Plant Pathology, 2016, 146, 779-791.	1.7	10
58	Effect of postharvest practices on the culturable filamentous fungi and yeast microbiota associated with the pear carpoplane. Postharvest Biology and Technology, 2016, 118, 87-95.	6.0	15
59	Prevalence and serovar diversity of Salmonella spp. in primary horticultural fruit production environments. Food Control, 2016, 69, 13-19.	5.5	20
60	Nonylphenol, an industrial endocrine disrupter chemical, affects root hair growth, shoot length and root length of germinating cos lettuce (Lactuca sativa). Seed Science and Technology, 2016, 44, 43-52.	1.4	15
61	Antimicrobial Resistance Profiles of <i>Salmonella</i> spp. from Agricultural Environments in Fruit Production Systems. Foodborne Pathogens and Disease, 2016, 13, 495-501.	1.8	10
62	Microbiological Status and Food Safety Compliance of Commercial Basil Production Systems. Journal of Food Protection, 2016, 79, 43-50.	1.7	6
63	Comparison of Safe Alternative Dipping Treatments to Maintain Quality of Zucchini. Journal of Food Quality, 2016, 39, 109-115.	2.6	6
64	Microbiological Food Safety Status of Commercially Produced Tomatoes from Production to Marketing. Journal of Food Protection, 2016, 79, 392-406.	1.7	19
65	Expression of pathogenesis-related (PR) genes in avocados fumigated with thyme oil vapours and control of anthracnose. Food Chemistry, 2016, 194, 938-943.	8.2	35
66	Microbial succession in white button mushroom production systems from compost and casing to a marketable packed product. Annals of Microbiology, 2016, 66, 151-164.	2.6	29
67	Microbial Hazards in Irrigation Water: Standards, Norms, and Testing to Manage Use of Water in Fresh Produce Primary Production. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 336-356.	11.7	222
68	In vitro sensitivity testing of Cladobotryum mycophilum to carbendazim and prochloraz manganese. South African Journal of Science, 2015, 111, 7.	0.7	10
69	A scoping study on the prevalence of <i>Escherichia coli</i> and <i>Enterococcus</i> species in harvested rainwater stored in tanks. Water S A, 2015, 41, 501.	0.4	9
70	Imazalil resistance in Penicillium digitatum and P. italicum causing citrus postharvest green and blue mould: Impact and options. Postharvest Biology and Technology, 2015, 107, 66-76.	6.0	57
71	Pathogenicity and Host Susceptibility of <i>Penicillium</i> spp. on Citrus. Plant Disease, 2015, 99, 21-30.	1.4	25
72	Pyrosequencing analysis of roof-harvested rainwater and river water used for domestic purposes in Luthengele village in the Eastern Cape Province of South Africa. Environmental Monitoring and Assessment, 2015, 187, 41.	2.7	30

#	Article	IF	CITATIONS
73	Antibiotic resistance in Escherichia coli isolates from roof-harvested rainwater tanks and urban pigeon faeces as the likely source of contamination. Environmental Monitoring and Assessment, 2015, 187, 405.	2.7	15
74	Determining the Potential Link between Irrigation Water Quality and the Microbiological Quality of Onions by Phenotypic and Genotypic Characterization of Escherichia coli Isolates. Journal of Food Protection, 2015, 78, 643-651.	1.7	18
75	Pathogenic <i>Penicillium</i> spp. on Apple and Pear. Plant Disease, 2014, 98, 590-598.	1.4	50
76	The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Protection, 2014, 64, 159-167.	2.1	171
77	Avocado Fruit Quality Management during the Postharvest Supply Chain. Food Reviews International, 2014, 30, 169-202.	8.4	83
78	Factors determining use of biological disease control measures by the avocado industry in South Africa. Crop Protection, 2013, 51, 7-13.	2.1	14
79	Epidemiology of cashew anthracnose (Colletotrichum gloeosporioides Penz.) in Mozambique. Crop Protection, 2013, 49, 66-72.	2.1	13
80	Essential oil vapours suppress the development of anthracnose and enhance defence related and antioxidant enzyme activities in avocado fruit. Postharvest Biology and Technology, 2013, 81, 66-72.	6.0	117
81	A search for anthracnose resistant cashew cultivars in Mozambique. Crop Protection, 2013, 50, 6-11.	2.1	6
82	Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants. Journal of Water and Health, 2013, 11, 210-223.	2.6	30
83	Comparison of biofilm formation and water quality when water from different sources was stored in large commercial water storage tanks. Journal of Water and Health, 2013, 11, 30-40.	2.6	15
84	Alternative Disease Assessment Method for Cercospora Spot (Pseudocercospora purpurea (Cooke)) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
85	Combination of 1â€methylcyclopropene treatment and controlled atmosphere storage retains overall fruit quality and bioactive compounds in mango. Journal of the Science of Food and Agriculture, 2012, 92, 821-830.	3.5	43
86	Effect of biocontrol agent Bacillus amyloliquefaciens and 1-methyl cyclopropene on the control of postharvest diseases and maintenance of fruit quality. Crop Protection, 2011, 30, 173-178.	2.1	31
87	Determination of the status of the etiological agent of American foulbrood,Paenibacillus larvae, in Swaziland. Journal of Apicultural Research, 2011, 50, 284-291.	1.5	1
88	A Survey for â€~ <i>Candidatus</i> Liberibacter' Species in South Africa Confirms the Presence of Only â€~ <i>Ca.</i> L. africanus' in Commercial Citrus. Plant Disease, 2010, 94, 244-249.	1.4	29
89	Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. European Journal of Plant Pathology, 2010, 126, 175-185.	1.7	110
90	Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of	2.1	139

Combined application of antagonist Bacillus amyloliquefaciens and peach postharvest diseases. Crop Protection, 2010, 29, 369-377.

#	Article	IF	CITATIONS
91	Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biological Control, 2010, 53, 122-128.	3.0	168
92	EFFECT OF PASSIVE AND ACTIVE MODIFIED ATMOSPHERE PACKAGING ON QUALITY RETENTION OF TWO CULTIVARS OF LITCHI (<i>LITCHI CHINENSIS</i> SONN.). Journal of Food Quality, 2010, 33, 337-351.	2.6	18
93	Iturin A is the principal inhibitor in the biocontrol activity of <i>Bacillus amyloliquefaciens</i> PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 2010, 108, 386-395.	3.1	303
94	Attachment and Colonization by O157:H7, subsp. serovar Typhimurium, and on Stone Fruit Surfaces and Survival through a Simulated Commercial Export Chain. Journal of Food Protection, 2010, 73, 1247-1256.	1.7	32
95	An Overview on Litchi Fruit Quality and Alternative Postharvest Treatments to Replace Sulfur Dioxide Fumigation. Food Reviews International, 2010, 26, 162-188.	8.4	48
96	Fruit quality and physiological responses of litchi cultivar McLean's Red to 1-methylcyclopropene pre-treatment and controlled atmosphere storage conditions. LWT - Food Science and Technology, 2010, 43, 942-948.	5.2	38
97	Effect of Different Preharvest Treatment Regimes on Fruit Quality of Litchi Cultivar â€~Maritius'. Journal of Plant Nutrition, 2009, 32, 19-29.	1.9	19
98	Integrated application of 1-methylcyclopropene and modified atmosphere packaging to improve quality retention of litchi cultivars during storage. Postharvest Biology and Technology, 2009, 52, 71-77.	6.0	68
99	Effect of integrated application of chitosan coating and modified atmosphere packaging on overall quality retention in litchi cultivars. Journal of the Science of Food and Agriculture, 2009, 89, 915-920.	3.5	133
100	Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. Journal of Agricultural Science, 2009, 147, 17-30.	1.3	45
101	Evaluation of Ethiopian plant extracts,Acacia seyalandWithania somnifera, to control green mould and ensure quality maintenance of citrus (Citrus sinensisL.). Fruits, 2009, 64, 285-294.	0.4	7
102	Volatile compounds, quality attributes, mineral composition and pericarp structure of South African litchi export cultivars Mauritius and McLean's Red. Journal of the Science of Food and Agriculture, 2008, 88, 1074-1081.	3.5	25
103	Postharvest decay control and quality retention in litchi (cv. McLean's Red) by combined application of modified atmosphere packaging and antimicrobial agents. Crop Protection, 2008, 27, 1208-1214.	2.1	40
104	Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biological Control, 2008, 45, 72-84.	3.0	51
105	Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biological Control, 2007, 40, 97-106.	3.0	109
106	Relating Leaf Nutrient Status to Fruit Quality Attributes in Litchi cv. â€~Mauritius'. Journal of Plant Nutrition, 2007, 30, 1727-1735.	1.9	5
107	Evaluation of pre-harvest Bacillus licheniformis sprays to control mango fruit diseases. Crop Protection, 2007, 26, 1474-1481.	2.1	16
108	Failure ofPhyllosticta citricarpapycnidiospores to infect Eureka lemon leaf litter. Australasian Plant Pathology, 2007, 36, 87.	1.0	17

#	Article	IF	CITATIONS
109	Control ofPenicillium digitatum on citrus fruit using two plant extracts and study of their mode of action. Phytoparasitica, 2007, 35, 264-276.	1.2	21
110	Effect of a biocontrol agent (Bacillus subtilis) and modified atmosphere packaging on postharvest decay control and quality retention of litchi during storage. Phytoparasitica, 2007, 35, 507-518.	1.2	28
111	Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biological Control, 2006, 37, 68-74.	3.0	89
112	Evaluation of different formulations of Bacillus licheniformis in mango pack house trials. Biological Control, 2006, 37, 237-242.	3.0	19
113	Evaluation of the integrated application of two types of modified atmosphere packaging and hot water treatments on quality retention in the litchi cultivar †McLean's Red'. Journal of Horticultural Science and Biotechnology, 2006, 81, 639-644.	1.9	13
114	Advances in control of postharvest diseases in tropical fresh produce. International Journal of Postharvest Technology and Innovation, 2006, 1, 48.	0.1	62
115	A One-Day Sensitive Method to Detect and Distinguish Between the Citrus Black Spot Pathogen Guignardia citricarpa and the Endophyte Guignardia mangiferae. Plant Disease, 2006, 90, 97-101.	1.4	34
116	Influence of modified atmosphere packaging and postharvest treatments on quality retention of litchi cv. Mauritius. Postharvest Biology and Technology, 2006, 41, 135-142.	6.0	73
117	The potential global geographical distribution of Citrus Black Spot caused by Guignardia citricarpa (Kiely): likelihood of disease establishment in the European Union. Crop Protection, 2005, 24, 297-308.	2.1	73
118	Semi-commercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biology and Technology, 2005, 38, 57-65.	6.0	60
119	Pathogen Survival on Fresh Fruit in Ocean Cargo and Warehouse Storage. , 2005, , 221-243.		0
120	Effect of different post-harvest treatments on overall quality retention in litchi fruit during low temperature storage. Journal of Horticultural Science and Biotechnology, 2005, 80, 32-38.	1.9	32
121	Biological control in Africa: can it provide a sustainable solution for control of fruit diseases?. South African Journal of Botany, 2004, 70, 128-139.	2.5	11
122	Genetic Diversity Among Alternaria solani Isolates from Potatoes in South Africa. Plant Disease, 2004, 88, 959-964.	1.4	85
123	Influence of environmental factors on field concentrations ofAlternaria solani conidia above a South African potato crop. Phytoparasitica, 2003, 31, 353-364.	1.2	32
124	Early blight in South Africa: Knowledge, attitudes and control practices of potato growers. Potato Research, 2003, 46, 27-37.	2.7	12
125	Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biology and Technology, 2003, 28, 187-194.	6.0	143
126	Comparison of cross inoculation potential of South African avocado and mango isolates of Colletotrichum gloeosporioides. Microbiological Research, 2003, 158, 143-150.	5.3	59

#	Article	IF	CITATIONS
127	Evaluation of PLANT-Plus, a decision support system for control of early blight on potatoes in South Africa. Crop Protection, 2003, 22, 821-828.	2.1	14
128	A comparative morphological study of South African avocado and mango isolates ofColletotrichum gloeosporioides. Canadian Journal of Botany, 2003, 81, 877-885.	1.1	15
129	Biological control of postharvest diseases of fruits and vegetables. Applied Mycology and Biotechnology, 2002, , 219-238.	0.3	23
130	BIOLOGICALCONTROL OFPOSTHARVESTDISEASES OFFRUITS. Annual Review of Phytopathology, 2002, 40, 411-441.	7.8	878
131	Medicinal bulbous plants of South Africa and their traditional relevance in the control of infectious diseases. Journal of Ethnopharmacology, 2002, 82, 147-154.	4.1	91
132	Infection process of Colletotrichum dematium on cowpea stems. Mycological Research, 1999, 103, 230-234.	2.5	16
133	Field Sprays of Bacillus subtilis and Fungicides for Control of Preharvest Fruit Diseases of Avocado in South Africa. Plant Disease, 1997, 81, 455-459.	1.4	82
134	A rapid method for differentiation of Xanthomonas campestris pv. mangiferaeindicae from other Xanthomonads and mango phylloplane inhabitants. Journal of Basic Microbiology, 1995, 35, 337-347.	3.3	3
135	Electrophoretic and immunological analysis of lipopolysaccharides of Xanthomonas albilineans from three geographical regions. Letters in Applied Microbiology, 1995, 21, 210-214.	2.2	7
136	Evaluation of Bacterial Epiphytes Isolated from Avocado Leaf and Fruit Surfaces for Biocontrol of Avocado Postharvest Diseases. Plant Disease, 1995, 79, 1149.	1.4	68
137	Production of monoclonal antibodies against Xanthomonas campestris pv. mangiferaeindicae and their use to investigate differences in virulence. Journal of Applied Bacteriology, 1994, 77, 509-518.	1.1	7